Skip to main content
Log in

Strongly superhydrophobic silicon nanowires by supercritical CO2 drying

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This paper reports on the extremely superhydrophobic behavior of supercritical CO2 processed silicon nanowires SiNWs) with a contact angle in excess of ∼177°. Vertically aligned silicon nanowires with 10 nm to 40 nm diameter and 1 mm to 3 mm in length were obtained by electroless etching (EE) technique. The asfabricated SiNWs were superhydrophilic with no water droplet formation (zero contact angle), and were then completely transformed to an extreme superhydrophobic state when their nanoscale surface roughness is combined with trichlorosilane hydrophobic coating. The processed SiNW array was so hydrophobic that water droplets always bounced off the surface and did not allow contact angle measurements to be obtained unless the substrate was intentionally given a concave-curvature by vacuum suction. Utilization of a hydrophobically surface-treated micro-pipette syringe enabled the release of a water droplet onto this extremely superhydrophobic surface for contact angle measurement. To prevent severe nanowire agglomeration during the drying process of wet etched SiNWs, supercritical CO2 drying was utilized, which process significantly improved the nano configuration and enhanced hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Morales and C. M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  2. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001).

    Article  CAS  Google Scholar 

  3. L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, Nature 420, 57 (2002).

    Article  CAS  Google Scholar 

  4. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999).

    Article  CAS  Google Scholar 

  5. J. L. Gole, J. D. Stout, W. L. Rauch, and Z. L. Wang, Appl. Phys. Lett. 76, 2346 (2000).

    Article  CAS  Google Scholar 

  6. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 1471 (2000).

    Article  CAS  Google Scholar 

  7. K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  CAS  Google Scholar 

  8. K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, and J. Zhu, Angew. Chem. Int. Ed. 44, 2737 (2005).

    Article  CAS  Google Scholar 

  9. H. Fang, Y. Wu, J. Zhao, and J. Zhu, Nanotechnology 17, 3768 (2006).

    Article  CAS  Google Scholar 

  10. M. Nosonovsky and B. Bhushan, J. Phys.: Condens. Matter. 20, 225009 (2008).

    Article  Google Scholar 

  11. A. Lafuma and D. Quere, Nat. Mater. 12, 457 (2003)

    Article  Google Scholar 

  12. C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997).

    Article  Google Scholar 

  13. S. Herminghaus, Europhys. Lett. 52, 165 (2000).

    Article  Google Scholar 

  14. N. Patankar, Langmuir 19, 1249 (2003).

    Article  CAS  Google Scholar 

  15. K. K. S. Lau, Jos Bico, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. H. McKinley, and K. K. Gleason, Nano Lett. 3, 1701 (2003).

    Article  CAS  Google Scholar 

  16. X. R. Ye, L. H. Chen, C. Wang, J. F. Aubuchon, I. C. Chen, A. I. Gapin, J. B. Talbot, and S. Jin, J. Phys. Chem. B 110, 12938 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, C., Yoon, Y., Hong, D. et al. Strongly superhydrophobic silicon nanowires by supercritical CO2 drying. Electron. Mater. Lett. 6, 59–64 (2010). https://doi.org/10.3365/eml.2010.06.059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/eml.2010.06.059

Keywords

Navigation