Skip to main content
Log in

Paleobiogeographic Analysis of the Assemblages of Late Vendian Macrofossils

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

Similarity analysis of the taxonomic composition of the 13 major localities for Vendian macrofossils worldwide is performed using the Ochiai coefficient. There are two distinct subgroups among shallow-marine localities. The first subgroup includes Australia, the southeastern White Sea area, Podolia, India, and the Urals (degree of similarity 0.16–0.38). The second subgroup includes localities of Siberia, Northwest Canada, South China, South America, Southern Namibia, and the United States (degree of similarity up to 0.58). Such a division of the shallow-marine localities corresponds to the distribution of carbonate sediments and of the tubular problematic species Cloudina. This division is probably climate-related; i.e., localities of the second subgroup are associated with warm-water conditions (precipitation of carbonates, distribution of problematic remains with a carbonate skeleton), while the localities of the first subgroup are associated with cold-water conditions. Thus, the analysis performed indicates the location of the Australia, Baltica, and India cratons at high latitudes (which differs from the results demonstrated in some paleotectonic reconstructions based on paleomagnetic studies) and confirms the hypothesis that the Siberian Platform was located at tropical and subtropical latitudes. Accordingly, two paleobiogeographic realms are identified for the Late Vendian: the Subpolar Realm (Australia, Baltica, and India) and the Equatorial Realm (Siberia, Laurentia, Kalahari, South China, and Rio de la Plata).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abrajevitch, A. and Van der Voo, R., Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis, Earth Planet. Sci. Lett., 2010, vol. 293, pp. 164–170.

    Article  Google Scholar 

  2. Condie, K.C., Supercontinents, superplumes and continental growth: the Neoproterozoic record, Geol. Soc. London. Spec. Publ., 2003, vol. 206, pp. 1–21.

    Article  Google Scholar 

  3. Conway Morris, S., Mattes, B.W., and Chen, M., The early skeletal organism Cloudina: new occurrences from Oman and possibly China, Am. J. Sci., 1990, vol. 290-A, pp. 245–260.

    Google Scholar 

  4. Dong, L., Xiao, S., Shen, B., and Zhou, C., Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: tentative phylogenetic interpretation and implications for evolutionary stasis, J. Geol. Soc. London, 2008, vol. 165, pp. 367–78.

    Article  Google Scholar 

  5. Elming, S.A., Kravchenko, S.N., Layer, P., et al., Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: relevance to the Rodinia break-up, J. Geol. Soc. London, 2007, vol. 164, no. 5, pp. 969–982.

    Article  Google Scholar 

  6. Fedonkin, M.A., Gehling, J.G., Grey, K., et al., The Rise of Animals: Evolution and Diversification of the Kingdom Animalia, Baltimore: Johns Hopkins Univ. Press, 2007.

    Google Scholar 

  7. Fedorova, N.M., Levashova, N.M., Bazhenov, M.L., et al., The East European Platform in the Late Ediacaran: new paleomagnetic and geochronological data, Russ. Geol. Geophys., 2013, vol. 54, pp. 1392–1401.

    Article  Google Scholar 

  8. Fedorova, N.M., Levashova, N.M., Meert, J.G., et al., New paleomagnetic data on Baltica based on Upper Ediacaran deposits on the western slope of the Middle Urals, Dokl. Earth Sci., 2014, vol. 456, no. 1, pp. 512–516.

    Article  Google Scholar 

  9. Fedorova, N.M., Bazhenov, M.L., Meert, J.G., and Kuznetsov, N.B., Ediacaran–Cambrian paleogeography of Baltica: a paleomagnetic view from a diamond pit on the White Sea east coast, Lithosphere, 2016, vol. 8, pp. 564–573.

    Article  Google Scholar 

  10. Gehling, J.G., Narbonne, G.M., and Anderson, M.M., The first named Ediacaran body fossil, Aspidella terranovica, Palaeontol., 2000, vol. 43, pp. 427–456.

    Article  Google Scholar 

  11. Germs, G.J.B., New shelly fossils from Nama Group, South West Africa, Am. J. Sci., 1972, vol. 272, no. 8, pp. 752–761.

    Article  Google Scholar 

  12. Gibson, G.G., Teeter, S.A., and Fedonkin, M.A., Ediacaran fossils from the Carolina slate belt, Stanly County, North Carolina, Geology, 1984, vol. 12, pp. 387–390.

    Article  Google Scholar 

  13. Grant, S.W.F., Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic, Am. J. Sci., 1990, no. 290A, pp. 261–294.

  14. Grazhdankin, D.V., Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution, Paleobiology, 2004, vol. 30, pp. 203–221.

    Article  Google Scholar 

  15. Grazhdankin, D. and Gerdes, G., Ediacaran microbial colonies, Lethaia, 2007, vol. 40, pp. 201–210.

    Article  Google Scholar 

  16. Grazhdankin, D.V., Balthasar, U., Nagovitsin, K.E., and Kochnev, B.B., Carbonate-hosted Avalon-type fossils in Arctic Siberia, Geology, 2008, vol. 36, no. 10, pp. 803–806.

    Article  Google Scholar 

  17. Hammer, Q., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software package for education and data analysis, Palaeontol. Electron, 2001, vol. 4, no. 1, pp. 1–9.

    Google Scholar 

  18. Hodych, J.P., Cox, R.A., and Kosler, J., An equatorial Laurentia at 550 Ma confirmed by Grenvillian inherited zircons dated by LAM–ICP–MS in the Skinner Cove volcanics of western Newfoundland: implications for inertial interchange true polar wander, Precambrian Res., 2004, vol. 129, pp. 93–113.

    Article  Google Scholar 

  19. Hoffman, P.F., Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 1991, vol. 252, pp. 1409–1412.

    Article  Google Scholar 

  20. Hofmann, H.J. and Mountjoy, E.W., Namacalathus–Gloudina assemblage in Neoproterozoic Miette Group (Byng Formation), British Columbia: Canada’s oldest shelly fossils, Geology, 2001, vol. 29, pp. 1091–1094.

    Article  Google Scholar 

  21. Ivantsov, A.Yu., Finds of Ediacaran-type fossils in Vendian deposits of the Yudoma Group, Eastern Siberia, Dokl. Earth Sci., 2017, vol. 472, no. 2, pp. 143–146.

    Article  Google Scholar 

  22. Ivantsov, A.Yu., Gritsenko, V.P., Konstantinenko, L.I., and Zakrevskaya, M.A., Revision of the problematic Vendian macrofossils Beltanelliformis (= Beltanelloides, Nemiana), Paleontol. J., 2014, vol. 48, no. 13, pp. 1–26.

    Article  Google Scholar 

  23. Kontorovich, A.E., Varlamov, A.I., Grazhdankin, D.V., et al., A section of Vendian in the east of West Siberian Plate (based on data from the Borehole Vostok 3), Rus. Geol. Geophys., 2008, vol. 49, no. 12, pp. 932–939.

    Article  Google Scholar 

  24. Kuznetsov, N.B., Natapov, L.M., Belousova, E.A., et al., Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: implications for plate tectonic models, Gondwana Res., 2010, vol. 17, nos. 2–3, pp. 583–601.

    Article  Google Scholar 

  25. Kuznetsov, N.B., Meert, J.G., and Romanyuk, T.V., Ages of detrital zircons (U/Pb, LA–ICP–MS) from the Latest Neoproterozoic–Middle Cambrian (?) Asha Group and Early Devonian Takaty Formation, the Southwestern Urals: a test of an Australia–Baltica connection within Rodinia, Precambrian Res., 2014, vol. 244, pp. 288–305.

    Article  Google Scholar 

  26. Leonov, M.V. and Rud’ko, S.V., Finding of the Ediacaran-Vendian fossils in the Far Taiga Deposits, Patom highlands, Stratigr. Geol. Correl., 2012, vol. 20, no. 5, pp. 497–500.

    Article  Google Scholar 

  27. Levashova, N.M., Bazhenov, M.L., Meert, J.G., et al., Paleogeography of Baltica in the Ediacaran: paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals, Precambrian Res., 2013, vol. 236, pp. 16–30.

    Article  Google Scholar 

  28. Levashova, N.M., Bazhenov, M.L., Meert, J.G., et al., Paleomagnetism of Upper Ediacaran clastics from the South Urals: implications to paleogeography of Baltica and the opening of the Iapetus ocean, Gondwana Res., 2015, vol. 28, pp. 191–208.

    Article  Google Scholar 

  29. Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res., 2008, vol. 160, pp. 179–210.

    Article  Google Scholar 

  30. Llanos, M.P.I., Tait, J.A., Popov, V., and Abalmassova, A., Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: an alternative apparent polar wander path of Baltica for the Late Proterozoic–Early Palaeozoic, Earth Planet. Sci. Lett., 2005, vol. 240, pp. 732–747.

    Article  Google Scholar 

  31. McCausland, P.J.A., Van der Voo, R., and Hall, C.M., Circum-Iapetus paleogeography of the Precambrian–Cambrian transition with a new paleomagnetic constraint from Laurentia, Precambrian Res., 2007, vol. 156, pp. 125–152.

    Article  Google Scholar 

  32. McCausland, P.J.A., Hankard, F., Van der Voo, R., and Hall, C.M., Ediacaran paleogeography of Laurentia: paleomagnetism and 40Ar–39Ar geochronology of the 583 Ma Baie des Moutons syenite, Quebec, Precambrian Res., 2011, vol. 187, pp. 58–78.

    Article  Google Scholar 

  33. McMenamin, M.A.S., A case for two late Proterozoic–earliest Cambrian faunal province loci, Geology, 1982, vol. 10, no. 6, pp. 290–292.

    Article  Google Scholar 

  34. McMenamin, M.A.S. and McMenamin, D.L.S., The Emergence of Animals: the Cambrian Breakthrough, New York: Columbia Univ. Press, 1990.

    Book  Google Scholar 

  35. Meert, J.G., Ediacaran–Early Ordovician paleomagnetism of Baltica: a review, Gondwana Res., 2014, vol. 25, no. 1, pp. 159–169.

    Article  Google Scholar 

  36. Meert, J.G. and Torsvik, T.H., Palaeomagnetic constraints on Neoproterozoic “Snowball Earth” continental reconstructions, in The Extreme Proterozoic: Geology, Geochemistry, and Climate, Jenkins, G., McMenamin, M., Sohl, L., and McKay, C., Eds., AGU Geophys. Monogr., 2004.

    Google Scholar 

  37. Meert, J.G. and Lieberman, B.S., The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation, Gondwana Res., 2008, vol. 14, pp. 5–21.

    Article  Google Scholar 

  38. Meert, J.G., Walderhaug, H.J., Torsvik, T.H., and Hendricks, B.W.H., Age and palaeomagnetic signature of the Alno carbonatite complex (NE Sweden): additional controversy for the Neoproterozoic position of Baltica, Precambrian Res., 2007, vol. 154, pp. 159–174.

    Article  Google Scholar 

  39. Miller, A.J., A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications. Unpublished Technical Report. http://ajm.pioneeringprojects.org/files/CloudinaPaper_Final.pdf.

  40. Nagovitsin, K.E., Grazhdankin, D.V., and Kochnev, B.B., Ediacaria in the Siberian hypostratotype of the Riphean, Dokl. Earth Sci., 2008, vol. 419, no. 2, pp. 423–427.

    Article  Google Scholar 

  41. Nance, R.D., Murphy, J.B., and Santosh, M., The supercontinent cycle: a retrospective essay, Gondwana Res., 2013, vol. 25, pp. 4–29.

    Article  Google Scholar 

  42. Narbonne, G.M. and Hofmann, H.J., Ediacaran biota of Wernecke Mountains, Yukon, Canada, Palaeontolology, 1987, vol. 30, pp. 647–676.

    Google Scholar 

  43. Pisarevsky, S.A., Murphy, J.B., Cawood, P.A., and Collins, A.S., Late Neoproterozoic and Early Cambrian paleogeography: models and problems, in West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region, Geol. Soc. London. Spec. Publ., 2008, vol. 294, pp. 9–31.

    Article  Google Scholar 

  44. Powell, C. McA., Are Neoproterozoic glacial deposits preserved on the margins of Laurentia related to the fragmentation of two supercontinents? Comment. Geology, 1995, vol. 23, pp. 1053–1054.

    Article  Google Scholar 

  45. Powell, C. McA., Li, Z.X., McElhinny, M.W., et al., Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana, Geology, 1993, vol. 21, pp. 889–892.

    Article  Google Scholar 

  46. Serezhnikova, E.A., Vendian Hiemalora from Arctic Siberia reinterpreted as holdfasts of benthic organisms, Geol. Soc. London. Spec. Publ., 2007, vol. 286, pp. 331–337.

    Article  Google Scholar 

  47. Shatsillo, A.V., Vendian paleomagnetism of the south of Siberian Platform and some aspects of the Late Precambrian geodynamics, Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow: Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 2006.

  48. Shatsillo, A.V., Didenko, A.N., and Pavlov, V.E., Two competing paleomagnetic directions in the Late Vendian: new data for the SW Region of the Siberian Platform, Rus. J. Earth. Sci., 2005, vol. 7, pp. 1–24.

    Article  Google Scholar 

  49. Shatsillo, A.V., Kuznetsov, N.B., Pavlov, V.E., et al., The first magnetostratigraphic data on the stratotype of the Lopata Formation, Northeastern Yenisei Ridge: Problems of its age and paleogeography of the Siberian Platform at the Proterozoic–Phanerozoic boundary, Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1211–1214.

    Article  Google Scholar 

  50. Smith, A.G., Paleomagnetically and tectonically based global maps for Vendian to mid-Ordovician time, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press. 2001, pp. 11–46.

    Google Scholar 

  51. Smith, E.F., Nelson, L.L., Tweedt, S.M., et al., A cosmopolitan late Ediacaran biotic assemblage: new fossils from Nevada and Namibia support a global biostratigraphic link, Proc. R. Soc. B: Biol. Sci., 2017, vol. 284, no. 1858, pp. 1–10.

  52. The Vendian System: Vol. 1: Paleontology, Sokolov, B. and Iwanowski, A., Eds., Berlin, Heidelberg: Springer-Verlag, 1990a.

  53. The Vendian System: Vol. 2: Regional geology, Sokolov, B. and Iwanowski, A., Eds., Berlin, Heidelberg: Springer-Verlag, 1990b.

  54. Stump, E., The Ross orogen of the Transantarctic Mountains in the light of the Laurentian–Gondwana split, GSA Today, 1992, vol. 2, pp. 30–33.

    Google Scholar 

  55. Sun, W.G., Late Precambrian Pennatulids (sea pens) from the Eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Res., 1986, vol. 31, pp. 361–375.

    Article  Google Scholar 

  56. Tang, F., Yin, C., Bengtson, S., et al., Octoradiate spiral organisms in the Ediacaran of South China, Acta Geol. Sinica, 2008, vol. 82, pp. 27–34.

    Google Scholar 

  57. Tang, F., Bengtson, S., Wang, Y., et al., Eoandromeda and the origin of Ctenophora, Evolution and Development, 2011, vol. 13, no. 5, pp. 408–414.

    Article  Google Scholar 

  58. Torsvik, T.H., The Rodinia jigsaw puzzle, Science, 2003, vol. 300, pp. 1379–1381.

    Article  Google Scholar 

  59. Torsvik, T.H., Gaina, C., and Redfield, T.F., Antarctica and global paleogeography: from Rodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways, in Proc. 10th Int. Symp. on Antarctic Earth Sciences “Antarctica: A Keystone in a Changing World”, Washington, DC: The Nat. Acad. Press, 2008, pp. 125–140.

  60. Vintaned, J.A., et al., New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain, Acta Palaeontol. Polon., 2012, vol. 57, no. 1, pp. 205–224.

    Article  Google Scholar 

  61. Waggoner, B.M., Biogeographic analyses of the Ediacaran biota: a conflict with paleotectonic reconstructions, Paleobiology, 1999, vol. 25, pp. 440–458.

    Article  Google Scholar 

  62. Wang, Y., Chen, H., Wang, X., and Huang, Y., Evolution of the Ediacaran Doushantuoian Meta-Paleo-Community in northeast Guizhou South China, Acta Geol. Sinica, 2011, vol. 85, no. 3, pp. 533–543.

    Article  Google Scholar 

  63. Yanin, B.T., Paleobiogeografiya. Uchebnik dlya studentov vysshikh uchebnykh zavedenii (Paleobigeography. College Textbook), Moscow: Izdat. tsentr “Akademiya,” 2009 [in Russian].

  64. Zakrevskaya, M.A., Application of the data on lateral distribution of the Ediacaran biota for the paleobiogeographic reconstructions of the Late Vendian, in Mater. LIX Sess. Paleontol. obshch. “Sistematika organizmov. Ee znachenie dlya biostratigrafii i paleobiogeografii” (Proc. LIX Sess. Paleontol. Soc. RAS “Systematics of Organisms. Its Significance for Biostratigraphy and Paleobiogeography”), St. Petersburg, 2013, pp. 44–46.

  65. Zakrevskaya, M.A., Paleoecological analysis of Late Vendian benthic metazoan communities from the southeastern White Sea, Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow, 2016.

  66. Zhuravlev, A.Yu., Gamez Vintaned, J.A., and Ivantsov, A.Yu., First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin, Geol. Mag., 2009, vol. 146, no. 5, pp. 775–780.

    Article  Google Scholar 

  67. Zhuravlev, A.Yu., Liñán, E., Gámez Vintaned, J.A., et al., New finds of skeletal fossils in the terminal Neoproterozoic of the Siberian Platform and Spain, Acta Palaeontol. Polon., 2012, vol. 57, no. 1, pp. 205–224.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am sincerely grateful to the staff members of the Borissiak Paleontological Institute of the Russian Academy of Sciences (PIN RAS), to Academician M.A. Fedonkin and A.Yu. Ivantsov for valuable recommendations and discussions, and also to A.V. Shatsillo (Institute of Physics of the Earth) for providing advice on paleomagnetic studies of the Late Vendian.

Funding

The studies were supported by the Russian Foundation for Basic Research (grant no. 17-05-02212-a). Theoretical studies were partially supported by the grant for the fundamental research on the topic of the state assignment of Paleontological Institute, Russian Academy of Sciences, “The Emergence of Life, the Formation of the Biosphere, and the Development of Ancient Biotas.”

Reviewers N.B. Kuznetsov and M.A. Fedonkin

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zakrevskaya.

Additional information

Translated by S. Nikolaeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakrevskaya, M.A. Paleobiogeographic Analysis of the Assemblages of Late Vendian Macrofossils. Stratigr. Geol. Correl. 27, 603–611 (2019). https://doi.org/10.1134/S0869593819050095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593819050095

Keywords:

Navigation