Skip to main content
Log in

The Effect of Severe Hypoxia on HIF1- and Nrf2-Mediated Mechanisms of Antioxidant Defense in the Rat Neocortex

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

The transcription factor (TF) HIF1 is one of the most important factors of adaptation to chronic cerebral hypoxia. However, under the conditions of acute hypoxia and reoxygenation, the stress response TF (NRF2) becomes important. The interaction between these proteins at the level of regulation of antioxidant defense and glucose metabolism has been shown previously in hypoxia-sensitive cancer tumors. Here, we have studied the effect of severe hypobaric hypoxia (SH) on HIF1- and NRF2-dependent processes in the rat neocortex. We revealed the joint regulation of glutathione-dependent antioxidant systems by these proteins, which influenced the total antiradical activity and the cellular redox status. In particular, HIF1 inhibition prevented the SH-induced oxidative shift 23 h after reoxygenation, which was accompanied by an increase in the content of total glutathione and the activity of glutathione reductase. Both of these effects were NRF2-dependent, which suggests that this transcription factor is activated in response to SH in combination with HIF1 inhibition. The data confirm the previous hypothesis about the maladaptive effect of HIF1 under the conditions of acute hypoxia and reoxygenation and point to the contribution of NRF2 the protective mechanisms in the post-hypoxic period. The hypothesis of interaction between these transcription factors in the (post)hypoxic period requires further verification and may have substantial influence on understanding the molecular pathomechanisms of cerebral hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolanos, J.P., Almeida, A., and Moncada, S., Trends Biochem. Sci., 2010, vol. 35, no. 3, pp. 145–149.

    Article  CAS  PubMed  Google Scholar 

  2. Machler, P., Wyss, M.T., Elsayed, M., Stobart, J., and Gutierrez, R., Von Faber- Castell, A., Kaelin, V., Zuend, M., San Martin, A., Romero- Gomez, I., et al., Cell Metab., 2016, vol. 23, no. 1, pp. 94–102.

    Article  CAS  PubMed  Google Scholar 

  3. Duran, J., Saez, I., Gruart, A., Guinovart, J.J., and Delgado- Garcia, J.M., J. Cereb. Blood Flow Metab., 2013, vol. 33, no. 4, pp. 550–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atwell, D., Buchan, A.M., Charpak, S., Laurirzen, M., Macvicar, B.A., and Newman, E.A., Nature, 2010, vol. 468, pp. 232–243.

    Article  CAS  Google Scholar 

  5. Vetrovoy, O.V., Rybnikova, E.A., Glushchenko, T.S., Baranova, K.A., and Samoilov, M.O., Neurochem. J., 2014, vol. 8, no. 2, pp. 103–108.

    Article  CAS  Google Scholar 

  6. Shih, A.Y., J. Neurosci., 2005, vol. 25, no. 44, pp. 10321–10335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fernandez, S., Almeida, A., and Bolanos, J.P., Biochem. J., 2012, vol. 443, pp. 3–11.

    Article  CAS  Google Scholar 

  8. Liu, W., Shen, S., Zhao, X., and Chen, G., Int. J. Biochem. Mol. Biol., 2012, vol. 3, no. 2, pp. 165–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernaudin, M., Nedelec, A.-S., and Divoux, D., Mackenzie, E.T., Petit, E., and Schumann- Bard, P., J. Cereb. Blood Flow Metab., 2002, vol. 22, no. 4, pp. 393–403.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Y., Chen, X., Zhang, X., Shen, X., Wang, M., Wang, X., Liu, W.-C., Liu, C.-F., Liu, J., Liu, W., et al., Front. Mol. Neurosci., 2017, vol. 10.

  11. Chavez, J.C., Agani, F., Pichiule, P., and LaManna, J.C., J. Appl. Physiol., 2000, vol. 89, no. 5, pp. 1937–1942.

    Article  CAS  PubMed  Google Scholar 

  12. Dengler, V.L., Galbraith, M.D., and Espinosa, J.M., Crit. Rev. Biochem. Mol. Biol., 2014, vol. 49, no. 1, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  13. Ann Sheldon, R., Lee, C.L., Jiang, X., Knox, R.N., and Ferriero, D.M., Pediatr. Res., 2014, vol. 76, no. 1, pp. 46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rybnikova, E. and Samoilov, M., Front. Neurosci., 2015, vol. 9, pp. 1–11.

    Article  Google Scholar 

  15. Huang, Y., Li, W., Su, Z., and Kong, A.N.T., J. Nutr. Biochem., 2015, vol. 26, no. 12, pp. 1401–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wild, A.C., Moinova, H.R., and Mulcahy, R.T., J. Biol. Chem., 1999, vol. 274, no. 47, pp. 33627–33636.

    Article  CAS  PubMed  Google Scholar 

  17. Ji, L., Li, H., Gao, P., Shang, G., Zhang, D.D., Zhang, N., and Jiang, T., PLoS One, 2013, vol. 8, no. 5, pp. 1–12.

    CAS  Google Scholar 

  18. Singh, A., Wu, H., Zhang, P., Happel, C., Ma, J., and Biswal, S., Mol. Cancer Ther., 2010, vol. 9, no. 8, pp. 2365–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hayes, J.D. and McMahon, M., Trends Biochem. Sci., 2009, vol. 34, no. 4, pp. 176–188.

    Article  CAS  PubMed  Google Scholar 

  20. Thimmulappa, R.K., Mai, K.H., and Srisuma, S., Cancer Res., 2002, vol. 62, pp. 5196–5203.

    CAS  PubMed  Google Scholar 

  21. Shih, A.Y., Johnson, D.A., Wong, G., Kraft, A.D., Jiang, L., Erb, H., Johnson, J.A., and Murphy, T.H., J. Neurosci., 2003, vol. 23, no. 8, pp. 3394–3406.

    Article  CAS  PubMed  Google Scholar 

  22. Kislin, M.S., Tyul'kova, E.I., and Samoilov, M.O., Neirokhimiya, 2010, vol. 27, no. 2, pp. 144–149.

    CAS  Google Scholar 

  23. Rybnikova, E., Vataeva, L., Tyulkova, E., Gluschenko, T., Otellin, V., Pelto-Huikko, M., and Samoilov, M.O., Behav. Brain Res., 2005, vol. 160, no. 1, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  24. Vataeva, L.A., Tyul'kova, E.I., and Samoilov, M.O., Dokl. Biol. Sci., 2004, vol. 395, no. 3, pp. 109–111, http://www.ncbi.nlm.nih.gov/pubmed/15255136

    Article  CAS  PubMed  Google Scholar 

  25. Kislin, M.S., Stroev, S.A., Glushchenko, T.S., Tiul' kova, E.I., Pelto- Huikko, M., and Samoilov, M.O., Biomed. Khim., 2013, vol. 59, no. 6, pp. 673–681.

    Article  CAS  PubMed  Google Scholar 

  26. Rybnikova, E., Vorobyev, M., Pivina, S., and Samoilov, M., Neurosci. Let., 2012, vol. 513, no. 1, pp. 100–105.

    Article  CAS  Google Scholar 

  27. Vetrovoy, O., Tulkova, E., Sarieva, K., Kotryahova, E., Zenko, M., and Rybnikova, E., Neurosci. Lett., 2017, vol. 639, pp. 49–52.

    Article  CAS  PubMed  Google Scholar 

  28. Vetrovoi, O.V., Rybnikova, E.A., Glushchenko, T.S., and Samoilov, M.O., Neuroscience and Behavioral Physiology, 2015, vol. 45, no. 4, pp. 367–370.

    Article  CAS  Google Scholar 

  29. Segura, C., Bandres, E., Troconiz, I.F., Saya, O., Renedo, M.J., and Garrido, M.J., Pharm. Res., 2004, vol. 21, no. 4, pp. 567–573.

    Article  CAS  PubMed  Google Scholar 

  30. Rapisarda, A., Zalek, J., Hollingshead, M., Braunschweig, T., Uranchimeg, B., Bonomi, C.A., Borgel, S.D., Carter, J.P., Hewitt, S.M., Shoemaker, R.H., et al., Cancer Res., 2004, vol. 64, no. 19, pp. 6845–6848.

    Article  CAS  PubMed  Google Scholar 

  31. Rybnikova, E., Sitnik, N., Gluschenko, T., Tjulkova, E., and Samoilov, M.O., Brain Res., 2006, vol. 1089, no. 1, pp. 195–202.

    Article  CAS  PubMed  Google Scholar 

  32. Rodrigues, G. de L.A., Pellegrino, de I.A., in General Neurochemical Techniques, 1986, p. 568.

    Google Scholar 

  33. Prior, R.L., Wu, X., and Schaich, K., J. Agric. Food Chem., 2005, vol. 53, no. 10, pp. 4290–4302.

    Article  CAS  PubMed  Google Scholar 

  34. Akerboom, T.P.M. and Sies, H., in Methods in Enzymology, vol. 77, Academic Press, 1981, pp. 373–381.

    Article  CAS  PubMed  Google Scholar 

  35. Levander, O.A. and Smith, A.D., in Methods in Enzymology, Academic Press, 2002, pp. 113–121.

    Google Scholar 

  36. Costa, L.G., Hogston, E., Lawrence, D.A., and Reed, D.J., in Current Protocols in Toxicology, John Wiley & Sons, 2005, pp. 1141–1227.

    Google Scholar 

  37. Folch, J., Lees, M., and Sloane, G.H., J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509.

    CAS  Google Scholar 

  38. Bidlack, W.R. and Tappel, A.L., Lipids, 1973, vol. 8, no. 4, pp. 203–207.

    Article  CAS  PubMed  Google Scholar 

  39. Bartlett, R., J. Biol. Chem., 1959, vol. 234, no. 3, pp. 449–458.

    CAS  PubMed  Google Scholar 

  40. Dunn, O.J., J. Am. Stat. Assoc., 1961, vol. 56, no. 293, pp. 52–64.

    Article  Google Scholar 

  41. Ray, P.D., Huang, B.W., and Tsuji, Y., Cell. Signal., 2012, vol. 24, no. 5, pp. 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galkina, O.V., Neurochem. J., 2013, vol. 7, no. 2, pp. 89–97.

    Article  CAS  Google Scholar 

  43. Deponte, M., Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3217–3266.

    Article  CAS  PubMed  Google Scholar 

  44. Huang, Y., Fang, W., Wang, Y., Yang, W., and Xiong, B., Int. J. Mol. Med., 2012, vol. 29, no. 5, pp. 906–912.

    CAS  PubMed  Google Scholar 

  45. Brigelius-Flohe, R. and Maiorino, M., Biochim. Biophys. Acta, 2013, vol. 1830, no. 5, pp. 3289–3303.

    Article  CAS  PubMed  Google Scholar 

  46. Harvey, C.J., Thimmulappa, R.K., Singh, A., Blake, D.J., Ling, G., Wakabayashi, N., Fujii, J., Myers, A., and Biswal, S., Free Radic. Biol. Med., 2009, vol. 46, no. 4, pp. 443–453.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, H., Colavitti, R., Rovira, I.I., and Finkel, T., Circ. Res., 2005, vol. 97, no. 10, pp. 967–974.

    Article  CAS  Google Scholar 

  48. Fukutomi, T., Takagi, K., Mizushima, T., Ohuchi, N., and Yamamoto, M., Mol. Cell. Biol., 2014, vol. 34, no. 5, pp. 832–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, D.D., Drug Metab. Rev., 2006, vol. 38, no. 4, pp. 769–789.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka, N., Ikeda, Y., Ohta, Y., Deguchi, K., Tian, F., Shang, J., Matsuura, T., and Abe, K., Brain Res., 2011, vol. 1370, pp. 246–253.

    Article  CAS  PubMed  Google Scholar 

  51. Jimenez-Blasco, D., Santofimia-Castano, P., Gonzalez, A., Almeida, A., and Bolanos, J., Cell Death Differ., 2015, vol. 22, pp. 1877–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rybnikova, E.A., Baranova, K.A., Gluschenko, T.S., Vetrovoy, O., Sidorova, M., and Portnichenko, V.I., Int. J. Physiol. Pathophysiol., 2015, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Sarieva.

Additional information

Russian Text © The Author(s), 2019, published in Neirokhimiya, 2019, Vol. 36, No. 2, pp. 128–139.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarieva, K.V., Lyanguzov, A.Y., Galkina, O.V. et al. The Effect of Severe Hypoxia on HIF1- and Nrf2-Mediated Mechanisms of Antioxidant Defense in the Rat Neocortex. Neurochem. J. 13, 145–155 (2019). https://doi.org/10.1134/S1819712419020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712419020107

Keywords

Navigation