Skip to main content
Log in

Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A non-toxic and bio-active natural polymer electrolyte iota-carrageenan (i-carrageenan) with LiClO4 has been prepared by conventional solution casting technique. Succinonitrile (SN) plastic crystal has been used as an additive to optimize the conductivity of i-carrageenan biopolymer electrolytes. The obtained biopolymer electrolytes are characterized by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry and AC impedance studies. The highest ionic conductivity at room temperature is 3.57 × 10−4 S cm−1 for the film composition of 1.0 g i-carrageenan/0.5 wt% LiClO4. The inclusion of 0.3 wt% of SN into this polymeric system has improved the value of ionic conductivity to 3.33 × 10−3 S cm−1 at ambient temperature, and the activation energy is found to be very low for this concentration. Transference number analysis also reveals that the cause of conductivity is primarily due to ions with the highest ionic transference number of 0.92 (Wagner’s method) and cationic transference number of 0.58 (Bruce and Vincent method) for the highest conducting plasticized sample. Transport parameters of diffusion coefficients and mobility of cations and anions are also in tune with the conductivity results. Linear sweep voltammetry shows that the highest conducting sample is electrochemically stable up to 2.36 V without SN, and it is 3.1 V with SN addition. These results recommend the suitability of the fabricated polymer electrolyte for lithium ion battery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shamsudin IJ, Ahmad A, Hassan NH, Kaddami H (2016) Biopolymer electrolytes based on carboxymethyl-carrageenan and imidazolium ionic liquid. Ionics 22(6):841–851

    Article  CAS  Google Scholar 

  2. Alves R, Donoso JP, Magon CJ, Silva IDA, Pawlicka A, Silva MM (2016) Solid polymer electrolytes based on chitosan and europium triflate. J Non-Cryst Solids 432:307–312

    Article  CAS  Google Scholar 

  3. Rani Mohd Saiful Asmal, Rudhziah Siti, Ahmad Azizan, Mohamed Nor Sabirin (2014) Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers 6:2371–2385

    Article  Google Scholar 

  4. Kimura K, Hassoun J, Panero S, Scrosati B, Tominaga Y (2015) Electrochemical properties of a poly(ethylene carbonate)-LiTFSI electrolyte containing a pyrrolidinium-based ionic liquid. Ionics 1:1. https://doi.org/10.1007/s11581-015-1370-x

    Article  CAS  Google Scholar 

  5. Mahmood Wan Ahmad Kamil, Khan Mohammad Mizanur Rahman, Yee Teow Cheng (2014) Effects of reaction temperature on the synthesis and thermal properties of carrageenan ester. J Phys Sci 25(1):123–138

    CAS  Google Scholar 

  6. Tuvikenea Rando, Truusa Kalle, Vaherb Merike, Kailasb Tiiu, Martinc Georg, Kersenc Priit (2006) Extraction and quantification of hybrid carrageenans from the biomass of the red algae Furcellaria lumbricalis and Coccotylus truncates. Proc Estonian Acad Sci Chem 55(1):40–53

    Google Scholar 

  7. Pereira L, Gheda SF, Ribeiro-Claro PJA (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem. https://doi.org/10.1155/2013/537202

    Article  Google Scholar 

  8. Mobarak NN, Jumaah FN, Ghani MA, Abdullah MP, Ahmad A (2015) Carboxymethyl carrageenan based biopolymer electrolytes. Electrochim Acta. https://doi.org/10.1016/j.electacta.2015.02.200

    Article  Google Scholar 

  9. Rajeswari N, Selvasekarapandian S, Karthikeyan S, Prabu M, Hirankumar G, Nithya H, Sanjeeviraja C (2011) Conductivity and dielectric properties of polyvinyl alcohol-polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 357:3751–3756

    Article  CAS  Google Scholar 

  10. Ramlli MA, Isa MIN (2016) Structural and ionic transport properties of protonic conducting solid biopolymer electrolytes based on carboxymethyl cellulose doped ammonium fluoride. J Phys Chem B 120(44):11567–11573

    Article  CAS  Google Scholar 

  11. Amran NNA, Manan NSA, Kadir MFZ (2016) The effect of LiCF3SO3 on the complexation with potato starch-chitosan blend polymer electrolytes. Ionics 1:1. https://doi.org/10.1007/s11581-016-1684-3

    Article  CAS  Google Scholar 

  12. Monisha S, Mathavan T, Selvasekarapandian S, Milton Franklin Benial A, Prema latha M (2016) Preparation and characterization of cellulose acetate and lithium nitrate for advanced electrochemical devices. Ionics 23:2697–2706

    Article  Google Scholar 

  13. Muchakayala Ravi, Song Shenhua, Gao Shang, Wang Xiaoling, Fan Youhua (2017) Structure and ion transport in an ethylene carbonate-modified biodegradable gel polymer electrolyte. Polym Testing 58:116–125

    Article  CAS  Google Scholar 

  14. Chandra Sekhar P, Naveen Kumar P, Sharma AK (2012) Effect of plasticizer on conductivity and cell parameters of (PMMA + NaClO4) polymer electrolyte system. IOSR J Appl Phys (IOSR-JAP) 2(4):01–06

    Article  Google Scholar 

  15. Taib NU, Idris NH (2014) Plastic crystal-solid biopolymer electrolytes for rechargeable lithium batteries. J Memb Sci. https://doi.org/10.1016/j.memsci.2014.06.001

    Article  Google Scholar 

  16. Wang Qiujun, Fan Huanhuan, Fan Li-Zhen, Shi Qjao (2013) Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries. Electrochim Acta 114:720–725

    Article  CAS  Google Scholar 

  17. Hu P, Chai J, Duan Y, Liu Z, Cui G, Chen L (2016) Progress in nitrile-based polymer electrolyte for high performance lithium batteries. J Mater Chem A. https://doi.org/10.1039/C6TA02907H

    Article  Google Scholar 

  18. Alarco P-J, Abu-lebdeh Y, Abouimrane A, Armand M (2004) The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat Mater. https://doi.org/10.1038/nmat1158

    Article  PubMed  Google Scholar 

  19. Fan Li-Zhen, Wang Xiao-Liang, Long Fei, Wang Xun (2008) Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 179:1772–1775

    Article  CAS  Google Scholar 

  20. Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-Carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23:2775–2780

    Article  Google Scholar 

  21. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2017) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Cryst Solids 481:424–434

    Article  Google Scholar 

  22. Shanmuga Priya S, Kathika M, Selvasekarapandian S, Manjuladevi R, Monisha S (2018) Study of biopolymer I-Carrageenan with magnesium perchlorate. Ionics. https://doi.org/10.1007/s11581-015-2535-1

    Article  Google Scholar 

  23. Jumaah FN, Mobarak NN, Ahmad A, Ghani MA, Rahman MYA (2014) Derivative of iota-carrageenan as solid polymer electrolyte. Ionics 21(5):1311–1320

    Article  Google Scholar 

  24. Shukur MF, Kadir MFZ (2014) Electrical and transport properties of NH4Br-doped cornstarch-based solid biopolymer electrolyte. Ionics. https://doi.org/10.1007/s11581-014-1157-5

    Article  Google Scholar 

  25. Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of ater in semicrystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376

    Article  CAS  Google Scholar 

  26. Ravi M, Song S, Wang J, Wang T, Nadimicherla R (2015) Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J Mater Sci Mater Electron 1:1. https://doi.org/10.1007/s10854-015-3899-x

    Article  CAS  Google Scholar 

  27. Moshiul Alam AKM, Beg MDH, Yunus RM (2016) Microstructure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites. Polym Compos. https://doi.org/10.1002/pc.23911

    Article  Google Scholar 

  28. Sim LH, Gan SN, Chan CH, Yahya R (2010) ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochim Acta A 76:287–292

    Article  CAS  Google Scholar 

  29. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) ac impedance, DSC and FT-IR investigations on (x) PVAc—(1−x) PVdF blends with LiClO4. Mater Chem Phys 98:55–61

    Article  CAS  Google Scholar 

  30. Volery Pascal, Besson Richard, Schaffer-Lequart Christelle (2004) Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52:7457–7463

    Article  CAS  Google Scholar 

  31. Jumaah Fatihah Najirah, Ahmad Azizan, Mobarak Nadhratun Naiim (2013) Characterization of i-carrageenan and its derivative based green polymer electrolytes. AIP Conf Proc 1571:768. https://doi.org/10.1063/1.4858748

    Article  CAS  Google Scholar 

  32. Khanmirzaei MH, Ramesh S, Ramesh K (2015) Effect of different iodide salts on ionic conductivity and structural and thermal behaviour of rice-starch-based polymer electrolytes for dye-sensitized solar cell application. Ionics. https://doi.org/10.1007/s11581-015-1385-3

    Article  Google Scholar 

  33. Rudhziaha S, Rani MSA, Ahmad A, Mohamed NS, Kaddami H (2015) Potential of blend of kappa-carrageenan and cellulose derivatives for green polymer electrolyte application. Ind Crops Prod 72:133–141

    Article  Google Scholar 

  34. Chitra R, Sathya P, Selvasekarapandian S, Monisha S, Moniha V, Meyvel S (2018) Synthesis and characterization of iota-carrageenan solid biopolymer electrolytes for electrochemical applications. Ionics. https://doi.org/10.1007/S11581-018-2687-z

    Article  Google Scholar 

  35. Bhuvaneswari R, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Arun Vijaya N, Araichimani Sanjeeviraja C (2014) Preparation and characterization of PVA complexed with amino acid, proline. Ionics. https://doi.org/10.1007/s11581-014-1206-0

    Article  Google Scholar 

  36. Malathi J, Kumaravadivel M, Brahmanandhan GM, Hema M, Baskaran R, Selvasekarapandian S (2010) Structural, thermal and electrical properties of PVA-LiCF3SO3 polymer electrolyte. J Non-Cryst Solids 356:2277–2281

    Article  CAS  Google Scholar 

  37. Kadir MFZ, Majid SR, Arof AK (2010) Plasticized chitosan-PVA bend polymer electrolyte based proton battery. Electrochim Acta 55:1475–1482

    Article  CAS  Google Scholar 

  38. Boukamp BA (1986) A package of impedance admittance data analysis. Solid State Ionics 18&19:136–140

    Article  Google Scholar 

  39. Perumal P, Christopherselvin P, Selvasekarapandian S (2018) Characterization of biopolymer pectin with lithium chloride and its application to electrochemical devices. Ionics. https://doi.org/10.1007/s11581-018-2507-5

    Article  Google Scholar 

  40. Cong Sheng-Dong, Huang Yun, Cao Hai-Jun, Lin Yuan-Hua, Li Yang, Tang Shui-Hua, Wng Ming-Shan, Li Xing (2016) A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources 307:624–633

    Article  Google Scholar 

  41. Ramesh S, Shanti R, Morris Ezra (2013) Employment of [Amim] Cl in the effort to upgrade the properties of cellulose acetate based polymer electrolytes. Cellulose 20:1377–1389

    Article  CAS  Google Scholar 

  42. Chatterjee B, Kulshrestha Niharika, Gupta PN (2016) Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Measurement 82:490–499

    Article  Google Scholar 

  43. Sikkanthar S, Karthikeyan S, Selvasekarapandian S, Vinoth Pandi D, Nithya S, Sanjeeviraja C (2014) Electrical conductivity characterization of polyacrylonitrile-ammonium bromide polymer electrolyte system. J Solid State Electrochem. https://doi.org/10.1007/s10008-014-2697-3

    Article  Google Scholar 

  44. Deshmukh Kalim, Basheer Ahamed M, Polu Anji Reddy, Sadasivuni Kishor Kumar, Khadheer Pasha SK, Ponnamma Deepalekshmi, AlMaadeed Mariam Al-Ali, Deshmukh Rajendra R, Chidambaram K (2016) Impedance spectroscopy, ionic conductivity and dielectric studies of new Li + ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-016-5267-x

    Article  Google Scholar 

  45. Nithya Srinivasan, Selvasekarapandian Subramaniyan, Karthikeyan Shunmugavel, Pandi Dharmalingam Vinoth (2014) Effect of propylene carbonate on the ionic conductivity of polyacrylonitrile-based solid polymer electrolytes. J Appl Polym Sci. https://doi.org/10.1002/app.41743

    Article  Google Scholar 

  46. Sundaramahalingam K, Muthuvinayagam M, Nallamuthu N, Vanitha D, Vahini M (2019) Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes. Polym Bull. https://doi.org/10.1007/s00289-018-02670-2

    Article  Google Scholar 

  47. Moniha V, Alagar M, Selvasekarapandian S, Sundaresan B, Hemalatha R, Boopathi G (2018) Synthesis and characterization of bio-polymer electrolyte based on iota-carrageenan with ammonium thiocyanate and its applications. J Solid State Electrochem 22(10):3209–3223. https://doi.org/10.1007/s10008-018-4028-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvasekarapandian.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitra, R., Sathya, P., Selvasekarapandian, S. et al. Synthesis and characterization of iota-carrageenan biopolymer electrolyte with lithium perchlorate and succinonitrile (plasticizer). Polym. Bull. 77, 1555–1579 (2020). https://doi.org/10.1007/s00289-019-02822-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02822-y

Keywords

Navigation