Skip to main content
Log in

Determination of short-period terms of total solar irradiance

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

In addition to the evident 11-year periodic changes, Total solar irradiance (TSI) also has some short-period processes. We carried out the wavelet analysis for TSI observational series and its inter-annual time series that is filtered out components less than 2 years and more than 8 years . Whether the wavelet graph or the global wavelet power spectrum, the results significantly show that there is a short period about 5.3 years, and its length and intensity both vary with time. Specifically, the strength of this period varies with the 11-year cycle change, showing pronounced characteristics of peak strength and valley weakness. Moreover, the amplitude of these low-frequency fraction results indicates different TSI variation properties. Under each solar cycle, the sum of the power spectrum density of the 3–6 year period terms reflects that the energy value of the short period is concentrated in that range. When the 11-year cycle is intensive, the 3–6 year period also becomes intensive in TSI. And the total spectral intensity of TSI will be concentrated in that short-period terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ftp://ftp.pmodwrc.ch/pub/data/irradiance.

References

  • Ball, W. T., Schumutz, W., Fehlmann, A., Finsterle, W, Walter B. 2016, J. Space Weather Space Clim., 6, A32

    ADS  Google Scholar 

  • Bolduc, C., Charbonneau, P., Dumoulin, V., Bourqui, M. S., Crouch, A. D. 2012, Sol. Phys., 279, 383

    ADS  Google Scholar 

  • Chapanov, Y., Vondrák, J., Ron, C. 2012, Journées Systèmes de Référence Spation-temporels 2011, 136

    ADS  Google Scholar 

  • Chapman, G. A. 1987, Ann. Rev. Astron. Astrophys., 25, 633

    ADS  Google Scholar 

  • Charbonneau, P. 2010, Living Rev. Sol. Phys., 7

  • Clúa de Gonzalez, A. L., Gonzalez, W. D., Dutra, S. L. G., Tsurutani, B. T. 1993, J. Geophys. Res., 98, 9215

    ADS  Google Scholar 

  • Coddington, O., Lean, J., Rottman, G., Pilewskie, P., Snow, M., Lindholm, D. 2016, The new climate data record of total and spectral solar irradiance Current progress and future steps, EGU General Assembly Conference Abstracts, 18, EPSC2016-9026

  • Dasi-Espuig, M., Jiang, J., Krivova, N. A., Solanki, S. K., Unruh, Y. C., Yeo, K. L. 2016, Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms, ArXiv, 590, A63. https://doi.org/10.1051/0004-6361/201527993

    ADS  Google Scholar 

  • Dewitte, S., Crommelynck, D., Mekaoui, S., Joukoff, A. 2004, Sol. Phys., 224, 209

    ADS  Google Scholar 

  • Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., Vögler A., 2009, Space Sci. Rev., 145, 337

    ADS  Google Scholar 

  • Eddy, J. A. 1976, Nat. Hist., 85, 62

    ADS  Google Scholar 

  • Fenimore, E. E., Asbridge, J. R., Bame, S. J., Feldman, W. C., Gosling, J. T., 1978, J. Geophys. Res., 83, 4353

    ADS  Google Scholar 

  • Friischristensen, E., Lassen, K. 1991, Science, 254, 698

    ADS  Google Scholar 

  • Fountoulakis, I., Bais, A. F., Fragkos, K., Meleti, C., Tourpali, K., Zempila, M. M. 2016, Atmos. Chem. Phys., 16, 2493

    ADS  Google Scholar 

  • Fröhlich, C., Andersen, B., Appourchaux, T., Berthomieu, G., Crommelynck, D., Domingo, V., Fichot, A., Finsterle, W., Gómez, M., Gough, D., Jiménez, A., Jeifsen, T., Lombaerts, M., Pap, J., Provost, J., Roca-Cortés, T., Romero, J., Roth, H., Sekii, T., Telljohann, S., Toutain, T., Wehrli, Ch. 1997, Sol. Phys., 170, 1

    ADS  Google Scholar 

  • Fröhlich, C., Lean, J. 1998, Geophys. Res. Lett., 25, 4377

    ADS  Google Scholar 

  • Fröhlich, C. 2006, Space Sci. Rev., 125, 53

    ADS  Google Scholar 

  • Fröhlich, C. 2012, Surv. Geophys., 33, 453

    ADS  Google Scholar 

  • Fröhlich, C. 2013, Space Sci. Rev., 176, 237

    ADS  Google Scholar 

  • Fröhlich, C. 2016, J. Space Weather Space Clim., 6, A18

    ADS  Google Scholar 

  • Georgieva, K. 2011, Astron. Astrophys., ISRN 437838

  • Gnevyshev, M. N. 1967, Sol. Phys., 1, 107

    ADS  Google Scholar 

  • Gnevyshev, M. N. 1977, Sol. Phys., 51, 175

    ADS  Google Scholar 

  • Gonzalez, A. L. C., Gonzalez, W. D., 1987, J. Geophys. Res., 92, 4357

    ADS  Google Scholar 

  • Hudson, H. S., Silva, S., Woodard, M., Willson, R. C. 1982, Sol. Phys., 76, 211

    ADS  Google Scholar 

  • Katsavrias, C., Preka-Papadema, P., Moussas, X. 2012, Sol. Phys., 280, 623

  • Kelly, T. E. 1977, Geohydrology of the Westwater Canyon Member, Morrison Formation, of the southern San Juan Basin, New Mexico, in San Juan Basin III, Fassett, J. E., James, H. L., Hodgson, Helen E., eds, New Mexico Geological Society, Guidebook, 28th Field Conference, p. 285

  • Kopp, G. 2016, J. Space Weather Space Clim., 6, 1

    Google Scholar 

  • Kren, A. C. 2015, Investigating the role of the Sun, the quasi-biennial oscillation, and the pacific decadal oscillation on decadal climate variability of the stratosphere. Dissertations and Theses - Gradworks

  • Labitzke, K., Chanin, M. L. 1988, Ann. Geophys., 6, 643

    ADS  Google Scholar 

  • Lean, J., Rind, D. 1994, Trans. Am. Geophys. Union, 75, 1

    ADS  Google Scholar 

  • Lee, J. N., Cahalan, R. F., Wu, D. L. 2015, J. Atmos. Sol. Terr. Phys., 132, 64

    ADS  Google Scholar 

  • Li, K. J., Feng, W., Xu, J. C., Gao, P. X., Yang, L. H., Liang, H. F., Zhan, L. S. 2012, Astrophys. J., 747, 1112

    Google Scholar 

  • Li, K. J., Zhang, J., Feng, W. 2017, Month. Not. R. Astron. Soc., 472, 289

    ADS  Google Scholar 

  • Mandal, S., Hegde, M., Samanta, T., Hazra, G., Banerjee, D., Ravindra, B. 2017, Astron. Astrophys., 601, A106

    ADS  Google Scholar 

  • Mann, M. E., Bradley, R. S., Hughes, M. K. 1998, Nature, 392, 779

    ADS  Google Scholar 

  • Mann, M. E., Bradley, R. S., Hughes, M. K. 1999, Geophys. Res. Lett., 26, 759

    ADS  Google Scholar 

  • Mendoza, B. 2005, Adv. Space Res., 35, 882

    ADS  Google Scholar 

  • Pelt, J., Kärner, O. 2012, On the variability of total solar irradiance, arXiv:1209.0322v1

  • Reid, G. 1987, Nature, 329, 142

    ADS  Google Scholar 

  • Richardson, J. D., Paularena, K. I., Lazarus, A. J., Belcher, J. W. 1994, Geophys. Res. Lett., 22, 325

    ADS  Google Scholar 

  • Richardson, J. D., Paularena, K. I., Lazarus, A. J., et al. 1995, Geophys. Res. Lett., 22, 325

    ADS  Google Scholar 

  • Sabbah, I., Kudela, K. 2011, J. Geophys. Res., 116, 4103

    Google Scholar 

  • Scafetta, N. 2010, J. Atmos. Sol. Terr. Phys., 72, 951

    ADS  Google Scholar 

  • Scafetta, N., Wilson, R. C. 2013, Astrophys. Space Sci., 348, 25

    ADS  Google Scholar 

  • Scafetta, N., Wilson, R. C. 2014, Astrophys. Space Sci., 350, 421

    ADS  Google Scholar 

  • Sello, S. 2012, Reconstructed Total Solar Irradiance as a precursor for long-term solar activity predictions a nonlinear dynamics approach, arXiv:1205.4966v1

  • Smith, E. A., Haar, T. H., Hickey, J. R., Maschhoff, B. 1990, Clim. Change, 5, 211

    ADS  Google Scholar 

  • Svalgaard, L., Wilcox, J. M. 1975, Sol. Phys., 41, 461

    ADS  Google Scholar 

  • Tinsley, B. A., Hoeksema, J. T., Baker, D. N., et al. 1994, J. Geophys. Res., 16805

    ADS  Google Scholar 

  • Torrence, C., Compo, G. 1998, Bull. Am. Meteor. Soc., 69, 61

    Google Scholar 

  • Willson, R. C. 1997, Science, 277, 1963

    ADS  Google Scholar 

  • Willson, R. C. 2014, Astrophys. Space Sci., 352, 341

    ADS  Google Scholar 

  • Willson, R. C., Hudson, H. S. 1988, Nature, 332, 810

    ADS  Google Scholar 

  • Willson, R. C., Hudson, H. S. 1991, Nature, 351, 42

    ADS  Google Scholar 

  • Willson, R. C., Mordvinov, A. V. 2003, Geophys. Res. Lett., 30, 1199

    ADS  Google Scholar 

  • Wilson, A. 2003, Solar variability as an input to the Earth’s environment, ESA Special Publication, 535

  • Wolff, C. L., Hickey, J. R. 1987, Sol. Phys., 109, 1

    ADS  Google Scholar 

  • Xiang, N. B. 2014, Chin. Astron. Astrophys., 38, 75

    ADS  Google Scholar 

  • Xiang, N. B., Kong, D. F. 2015, Astron. J., 150, 171

    ADS  Google Scholar 

  • Xu, J. C., Xie, J. L., Qu, Z. N. 2017, Astrophys. J., 851, 141

    ADS  Google Scholar 

  • Yeo, K. L., Krivova, N. A., Solanki, S. K., Glassmeier, K. H. 2014, Astron. Astrophys., 570, A85

    ADS  Google Scholar 

  • Yndestad, H., Solheim, J. E. 2017, New Astron., 51, 135

    ADS  Google Scholar 

  • Zhao, J., Han, Y. B. 2005, Earth Moon Planets, 97, 69

    Google Scholar 

  • Zhao, J., Han, Y. B. 2012, Sci. China-phys. Mech. Astron., 55, 179

    ADS  Google Scholar 

  • Zou, P., Li, Q. X. 2014, J. Geophys. Res.-Space Phys., 119, 9357

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (Grant No. 11203004). The data was provided by PMOD/WRC, Davos, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Lin, H., Liu, J. et al. Determination of short-period terms of total solar irradiance. J Astrophys Astron 40, 11 (2019). https://doi.org/10.1007/s12036-019-9577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-019-9577-2

Keywords

Navigation