Skip to main content
Log in

Different substrates within a lake harbour connected but specialised microbial communities

  • Trends in Aquatic Ecology III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Natural water bodies contain physically interconnected habitats suitable for microbes, such as different water layers and substrates for biofilms. Yet, little is known on the extent to which microbial communities are shared between such habitats and whether differences and similarities are consistent between sites. Here we explicitly tested hypotheses on similarities between aquatic bacterial communities found floating in water, in association with daphnids and with copepods, within bottom sediments, and on littoral stones of a lake. Through high-throughput 16S rDNA amplicon sequencing, distinguishable patterns were retrieved between habitats. In particular, community composition was more similar between the two zooplankton taxa, between the two water depths, and was rather different in sediments, where a large fraction of the total diversity was present. Most bacterial taxa were restricted to one or few habitats, whereas only few were found as generalists on different habitats. Our results indicate a limited role of source–sink dynamics between habitats for aquatic bacteria. Similarly to patterns of diversity in larger organisms, community composition was different between habitats, potentially because of specific mechanisms creating and maintaining habitat filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allgaier, M. & H.-P. Grossart, 2006. Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquatic Microbial Ecology 45: 115–128.

    Article  Google Scholar 

  • Alonso, C. & J. Pernthaler, 2005. Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Applied and Environmental Microbiology 71: 1709–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amalfitano, S. & S. Fazi, 2008. Recovery and quantification of bacterial cells associated with streambed sediments. Journal of Microbiological Methods 75: 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Amalfitano, S., G. Corno, E. Eckert, S. Fazi, S. Ninio, C. Callieri, H.-P. Grossart & W. Eckert, 2017. Tracing particulate matter and associated microorganisms in freshwaters. Hydrobiologia 800: 145–154.

    Article  CAS  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Andrews, S., 2010. FastQC: A quality control tool for high throughput sequence data. Reference Source.

  • Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.

    Article  Google Scholar 

  • Baselga, A. & C. D. L. Orme, 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808–812.

    Article  Google Scholar 

  • Besemer, K., H. Peter, J. B. Logue, S. Langenheder, E. S. Lindström, L. J. Tranvik & T. J. Battin, 2012. Unraveling assembly of stream biofilm communities. The ISME Journal 6: 1459–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosch, T. C. & D. J. Miller, 2016. The Holobiont Imperative. Perspectives from Early Emerging Animals. Springer, Vienna.

    Book  Google Scholar 

  • Bradley, J. A., J. S. Singarayer & A. M. Anesio, 2014. Microbial community dynamics in the forefield of glaciers. Proceedings of the Royal Society B: Biological Sciences 281: 1795.

    Google Scholar 

  • Bruno, L., D. Billi, P. Albertano & C. Urzí, 2006. Genetic characterization of epilithic cyanobacteria and their associated bacteria. Geomicrobiology Journal 23: 293–299.

    Article  CAS  Google Scholar 

  • Cadotte, M. W., 2006. Dispersal and species diversity: a meta-analysis. The American Naturalist 167: 913–924.

    Article  PubMed  Google Scholar 

  • Callens, M., E. Macke, K. Muylaert, P. Bossier, B. Lievens, M. Waud & E. Decaestecker, 2015. Food availability affects the strength of mutualistic host–microbiota interactions in Daphnia magna. The ISME Journal 10: 911–920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., K. Bittinger, E. S. Charlson, C. Hoffmann, J. Lewis, G. D. Wu, et al., 2012. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28: 2106–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comte, J., M. Berga, I. Severin, J. B. Logue & E. S. Lindström, 2017. Contribution of different bacterial dispersal sources to lakes: population and community effects in different seasons. Environmental Microbiology 19: 2391–2404.

    Article  CAS  PubMed  Google Scholar 

  • Crawley, M. J., 2013. The R Book, 2nd ed. Wiley, Chichester.

    Google Scholar 

  • Crispim, C. & C. Gaylarde, 2005. Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial Ecology 49: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Dang, H. & C. R. Lovell, 2016. Microbial surface colonization and biofilm development in marine environments. Microbiology and Molecular Biology Reviews 80: 91–138.

    Article  CAS  PubMed  Google Scholar 

  • Decaestecker, E., S. Gaba, J. A. Raeymaekers, R. Stoks, L. Van Kerckhoven, D. Ebert & L. De Meester, 2007. Host–parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450: 870–873.

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare, A., E. M. Eckert, A. Teruggi, D. Fontaneto, R. Bertoni, C. Callieri & G. Corno, 2015. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Molecular Ecology 24: 3888–3900.

    Article  CAS  PubMed  Google Scholar 

  • Duneau, D. & D. Ebert, 2012. The role of moulting in parasite defence. Proceedings of the Royal Society of London B: Biological Sciences 279: 3049–3054.

    Article  Google Scholar 

  • Eckert, E. M. & J. Pernthaler, 2014. Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. The ISME Journal 8: 1808–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert, E. M., M. M. Salcher, T. Posch, B. Eugster & J. Pernthaler, 2012. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environmental Microbiology 14: 794–806.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, E. M., A. Di Cesare, B. Stenzel, D. Fontaneto & G. Corno, 2016. Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Science of the Total Environment 571: 77–81.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R. C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Fargione, J., C. S. Brown & D. Tilman, 2003. Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the USA 100: 8916–8920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria, J., E. Jelihovschi & I. Allaman, 2013. Conventional Tukey Test. Brazil Universidade estajual de Santa Cruz, Ilheus.

    Google Scholar 

  • Fazi, S., S. Amalfitano, J. Pernthaler & A. Puddu, 2005. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environmental Microbiology 7: 1633–1640.

    Article  CAS  PubMed  Google Scholar 

  • Fontaneto, D. & J. Hortal, 2013. At least some protist species are not ubiquitous. Molecular Ecology 22: 5053–5055.

    Article  PubMed  Google Scholar 

  • Freese, H. M. & B. Schink, 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microbial Ecology 62: 882–894.

    Article  PubMed  Google Scholar 

  • Garneau, M.-È., T. Posch, G. Hitz, F. Pomerleau, C. Pradalier, R. Siegwart & J. Pernthaler, 2013. Short-term displacement of Planktothrix rubescens (Cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform. Limnology and Oceanography 58: 1892–1906.

    Article  CAS  Google Scholar 

  • Gasol, J. M. & X. A. G. Moran, 2016. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In Hydrocarbon and Lipid Microbiology Protocols: Single-Cell and Single-Molecule Methods. Springer, Berlin: 159–187.

  • Grossart, H.-P. & M. Simon, 1998. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquatic Microbial Ecology 15: 127–140.

    Article  Google Scholar 

  • Grossart, H. P., C. Dziallas & K. W. Tang, 2009. Bacterial diversity associated with freshwater zooplankton. Environmental Microbiology Reports 1: 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Grossart, H.-P., C. Dziallas, F. Leunert & K. W. Tang, 2010. Bacteria dispersal by hitchhiking on zooplankton. Proceedings of the National Academy of Sciences of the USA 107: 11959–11964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haglund, A.-L., P. Lantz, E. Törnblom & L. Tranvik, 2003. Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microbiology Ecology 46: 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. Martiny, 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology 10: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Hendricks, S. P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. Journal of the North American Benthological Society 12: 70–78.

    Article  Google Scholar 

  • Herlemann, D. P., M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek & A. F. Andersson, 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal 5: 1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner-Devine, C. M., M. A. Leibold, V. H. Smith & B. J. M. Bohannan, 2003. Bacterial diversity patterns along a gradient of primary productivity. Ecology Letters 6: 613–622.

    Article  Google Scholar 

  • Horner-Devine, M. C., J. M. Silver, M. A. Leibold, B. J. M. Bohannan, R. K. Colwell, J. A. Fuhrman, et al., 2007. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88: 1345–1353.

    Article  PubMed  Google Scholar 

  • Jefferson, T. T., 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology 27: 57–102.

    Article  Google Scholar 

  • Jones, S. E. & J. T. Lennon, 2010. Dormancy contributes to the maintenance of microbial diversity. Proceedings of the National Academy of Sciences of the USA 107: 5881–5886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, S. E. & K. D. McMahon, 2009. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics. Environmental Microbiology 11: 905–913.

    Article  PubMed  Google Scholar 

  • Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86–94.

    Article  PubMed  Google Scholar 

  • Kozich, J. J., S. L. Westcott, N. T. Baxter, S. K. Highlander & P. D. Schloss, 2013. Development of a dual-index sequencing strategy and curation pipeline for analysing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology 79: 5112–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langenheder, S. & A. J. Székely, 2011. Species sorting and neutral processes are both important during the initial assembly of bacterial communities. The ISME Journal 5: 1086–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langenheder, S., J. Wang, S. M. Karjalainen, T. M. Laamanen, K. T. Tolonen, A. Vilmi & J. Heino, 2016. Bacterial metacommunity organization in a highly connected aquatic system. FEMS Microbiology Ecology 93: fiw225.

    Article  CAS  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, et al., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lennon, J. T. & S. E. Jones, 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Lennon, J. T., Z. T. Aanderud, B. Lehmkuhl & D. R. Schoolmaster Jr., 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93: 1867–1879.

    Article  PubMed  Google Scholar 

  • Levins, R., 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton.

    Google Scholar 

  • Liao, J., X. Cao, L. Zhao, J. Wang, Z. Gao, M. C. Wang & Y. Huang, 2016. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiology Ecology 92: fiw174.

    Article  CAS  PubMed  Google Scholar 

  • Liao, J., X. Cao, J. Wang, L. Zhao, J. Sun, D. Jiang & Y. Huang, 2017. Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnology and Oceanography 62: 723–735.

    Article  Google Scholar 

  • Lindström, E. S., M. Forslund, G. Algesten & A. K. Bergström, 2006. External control of bacterial community structure in lakes. Limnology and Oceanography 51: 339–342.

    Article  Google Scholar 

  • Logue, J. B. & E. S. Lindström, 2010. Species sorting affects bacterioplankton community composition as determined by 16S rDNA and 16S rRNA fingerprints. The ISME Journal 4: 729–738.

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C. A. & R. Knight, 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the USA 104: 11436–11440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manca, M., A. Calderoni & R. Mosello, 1992. Limnological research in Lago Maggiore: studies on hydrochemistry and plankton. Memorie dell’Istituto italiano di Idrobiologia 50: 171–200.

    Google Scholar 

  • Manzari, C., B. Fosso, M. Marzano, A. Annese, R. Caprioli, A. M. D’Erchia, et al., 2015. The influence of invasive jellyfish blooms on the aquatic microbiome in a coastal lagoon (Varano, SE Italy) detected by an Illumina-based deep sequencing strategy. Biological Invasions 17: 923–940.

    Article  Google Scholar 

  • Mariadassou, M., S. Pichon & D. Ebert, 2015. Microbial ecosystems are dominated by specialist taxa. Ecology Letters 18: 974–982.

    Article  PubMed  Google Scholar 

  • Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 17: 10–12.

    Article  Google Scholar 

  • Monard, C., S. Gantner, S. Bertilsson, S. Hallin & J. Stenlid, 2016. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Scientific Reports 6: 37719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narváez-Zapata, J., C. Tebbe & B. Ortega-Morales, 2005. Molecular diversity and biomass of epilithic biofilms from intertidal rocky shores in the Gulf of Mexico. Biofilms 2: 93–103.

    Article  Google Scholar 

  • Nemergut, D. R., S. K. Schmidt, T. Fukami, S. P. O’Neill, T. M. Bilinski, L. F. Stanish, et al., 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77: 342–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuenschwander, S. M., J. Pernthaler, T. Posch & M. M. Salcher, 2015. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environmental Microbiology 17: 781–795.

    Article  CAS  PubMed  Google Scholar 

  • Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon & S. Bertilsson, 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obertegger, U., S. Bertilsson, M. Pindo, S. Larger & G. Flaim, 2018. Temporal variability of bacterioplankton is habitat driven. Molecular Ecology 27: 4322–4335.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J. et al. 2007. The vegan package. Community ecology package 10.

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs & H. Wagner, 2017. vegan: Community Ecology Package. R package version 2.4-5 [available on internet at https://CRAN.R-project.org/package=vegan]. Accessed 16 Oct 2019

  • Pandit, S. N., J. Kolasa & K. Cottenie, 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90: 2253–2262.

    Article  PubMed  Google Scholar 

  • Peerakietkhajorn, S., Y. Kato, V. Kasalický, T. Matsuura & H. Watanabe, 2015. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem. Environmental Microbiology 18: 2366–2374.

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler, J., 2013. Freshwater microbial communities. In The Prokaryotes. Springer, New York: 97–112.

  • Qi, W. H., G. Nong, J. F. Preston, F. Ben-Ami & D. Ebert, 2009. Comparative metagenomics of Daphnia symbionts. BMC Genomics 10: 1471–2164.

    Google Scholar 

  • R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Core Team, Vienna.

    Google Scholar 

  • Ragon, M., M. C. Fontaine, D. Moreira & P. Lopez-Garcia, 2012. Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Molecular Ecology 21: 3852–3868.

    Article  PubMed  Google Scholar 

  • Renberg, I. & M. Nilsson, 1992. Dormant bacteria in lake sediments as palaeoecological indicators. Journal of Paleolimnology 7: 127–135.

    Article  Google Scholar 

  • Robinson, C. J., B. J. M. Bohannan & V. B. Young, 2010. From structure to function: the ecology of host-associated microbial communities. Microbiology and Molecular Biology Reviews 74: 453–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RStudio Team, 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston.

    Google Scholar 

  • Ruiz-González, C., J. P. Niño-García & P. A. Giorgio, 2015. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecology Letters 18: 1198–1206.

    Article  PubMed  Google Scholar 

  • Salcher, M. M., J. Pernthaler, N. Frater & T. Posch, 2011. Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnology and Oceanography 56: 2027–2039.

    Article  CAS  Google Scholar 

  • Salmaso, N., D. Albanese, C. Capelli, A. Boscaini, M. Pindo & C. Donati, 2018. Diversity and cyclical seasonal transitions in the bacterial community in a large and deep perialpine lake. Microbial Ecology 76: 125–143.

    Article  CAS  PubMed  Google Scholar 

  • Schnell, I. B., K. Bohmann, & M. T. Gilbert. 2015. Tag jumps illuminated—reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources 15: 1289–1303.

    Article  CAS  PubMed  Google Scholar 

  • Shabarova, T., F. Widmer & J. Pernthaler, 2013. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environmental Microbiology 15: 2476–2488.

    Article  CAS  PubMed  Google Scholar 

  • Shade, A., S. E. Jones & K. D. McMahon, 2008. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environmental Microbiology 10: 1057–1067.

    Article  CAS  PubMed  Google Scholar 

  • Shade, A., J. S. Read, N. D. Youngblut, N. Fierer, R. Knight, T. K. Kratz, et al., 2012. Lake microbial communities are resilient after a whole-ecosystem disturbance. The ISME Journal 6: 2153–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sison-Mangus, M. P., A. A. Mushegian & D. Ebert, 2015. Water fleas require microbiota for survival, growth and reproduction. The ISME Journal 9: 59–67.

    Article  PubMed  Google Scholar 

  • Soininen, J., 2012. Macroecology of unicellular organisms – patterns and processes. Environmental Microbiology Reports 4: 10–22.

    Article  PubMed  Google Scholar 

  • Székely, A. J. & S. Langenheder, 2014. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiology Ecology 87: 102–112.

    Article  CAS  PubMed  Google Scholar 

  • Torsvik, V., L. Øvreås & T. F. Thingstad, 2002. Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296: 1064–1066.

    Article  CAS  PubMed  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183–206.

    Article  PubMed  Google Scholar 

  • Wang, J., J. Shen, Y. Wu, C. Tu, J. Soininen, J. C. Stegen, et al., 2013. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. The ISME Journal 7: 1310–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.

    Book  Google Scholar 

  • Wickham, H., 2012. reshape2: Flexibly reshape data: a reboot of the reshape package. R package version 1.

  • Yilmaz, P., L. W. Parfrey, P. Yarza, J. Gerken, E. Pruesse, C. Quast, T. Schweer, J. Peplies, W. Ludwig & F. O. Glöckner, 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research 42: D643–D648.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J. & D. Ning, 2017. Stochastic community assembly: does it matter in microbial ecology? Microbiology and Molecular Biology Reviews 81: e00002–17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research has received funding from the IEF Marie Skłodowska-Curie Actions of the EU’s Horizon2020 program, Grant N° 655537 - RAVE. Sequencing was financed through the Laboratorio di Biodiversità Moleculare - Lifewatch Italy call and we particularly thank Graziano Pesole and Teresa De Filippis for their collaboration. We thank Birgit Stenzel and Giuliana Manfredini for the help with sampling and laboratory work, Cristiana Callieri and Roberto Bertoni for the valuable input on potential sampling stations and lake properties, Andrea Lami for advice on sediment sampling, and two anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester M. Eckert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Koen Martens, Sidinei M. Thomaz, Diego Fontaneto & Luigi Naselli-Flores / Emerging Trends in Aquatic Ecology III

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2019_4068_MOESM1_ESM.pdf

Supplementary material 1 (PDF 274 kb) Supplementary Fig. S1 Map of sampling scheme. Left box: Lake Maggiore, between Italy (IT) and Switzerland (CH), right box: location of the three sampling stations, A–C

10750_2019_4068_MOESM2_ESM.txt

Supplementary material 2 (TXT 1242 kb) Supplementary Table S1 Raw OTU table for all replicates with summary of taxonomy for each OTU. Names of the sample report the station (A, B, or C), the habitat (e.g. water 10 m, copepods) and the replicate (a, b, or c)

10750_2019_4068_MOESM3_ESM.txt

Supplementary material 3 (TXT 7 kb) Supplementary Table S2 Ten repetitions of the permutational analysis of variance (adonis) on Sorensen index (βsor) distance matrix to evaluate the contribution of sampling station (Place), habitat (Medium), and their interaction

10750_2019_4068_MOESM4_ESM.txt

Supplementary material 4 (TXT 4 kb) Supplementary Table S3 Ten repetitions of nested analysis of variance (ANOVA) to test the effect of differences between habitats (Medium) and between sampling stations (Place) on α diversity

10750_2019_4068_MOESM5_ESM.txt

Supplementary material 5 (TXT 7 kb) Supplementary Table S4 Ten repetitions of Tukey’s test for nested ANOVA differences between habitats on α diversity

10750_2019_4068_MOESM6_ESM.txt

Supplementary material 6 (TXT 13 kb) Supplementary Table S5 Ten repetitions of generalised linear models (GLMs) considering quasi-Poisson distribution to test whether there was a connection between H-value and read number and B-value and read number

10750_2019_4068_MOESM7_ESM.txt

Supplementary material 7 (TXT 10 kb) Supplementary Table S6 Ten repetitions of ANOVA with Tukey’s honestly significant differences post hoc test to evaluate differences in B-values between habitats

10750_2019_4068_MOESM8_ESM.txt

Supplementary material 8 (TXT 10 kb) Supplementary Table S7 Ten repetitions of ANOVA with Tukey’s honestly significant differences post hoc test to evaluate differences in B-values between the 20 most abundant OTUs of each habitat

10750_2019_4068_MOESM9_ESM.txt

Supplementary material 9 (TXT 14 kb) Supplementary Table S8 Summary of the taxonomy and abundance (read counts) of the OTUs assigned as generalists in each habitat

10750_2019_4068_MOESM10_ESM.txt

Supplementary material 10 (TXT 44 kb) Supplementary Table S9 Summary of the taxonomy and abundance (read counts) of the OTUs assigned as specialists in each habitat

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckert, E.M., Amalfitano, S., Di Cesare, A. et al. Different substrates within a lake harbour connected but specialised microbial communities. Hydrobiologia 847, 1689–1704 (2020). https://doi.org/10.1007/s10750-019-04068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04068-1

Keywords

Navigation