Skip to main content
Log in

Acetogenin-Based Formulated Bioinsecticides on Anastrepha fraterculus: Toxicity and Potential Use in Insecticidal Toxic Baits

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The present study evaluated the lethal toxicity and oviposition deterrence of ethanolic extracts of Annona mucosa Jacq., Annona muricata L., and Annona sylvatica A. St.-Hil on Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) compared with those of a limonoid-based bioinsecticide (Azamax™ 1.2 EC—azadiractin +3-tigloyl-azadiractol) and a synthetic spinosyn-based insecticide (Delegate™ 250 WG—spinetoram). In addition, the efficacy of the selected toxic bait formulations was evaluated by mixing them with food attractants (Anamed™, 3% Biofruit and 7% sugarcane molasses). In the topical application and ingestion bioassays (2000 mg L−1), the aqueous emulsion of the A. mucosa extract caused greater than 80% mortality of A. fraterculus adults in a similar manner to the spinosyn-based synthetic insecticide. Concentration-response curves were performed for the most promising treatments and showed an activity level dependent on the mode of contamination, exposure time, and applied concentration. In bioassays with and without choice, the A. mucosa (77%), A. muricata (51%), A. sylvatica (60%), Azamax™ (74%), and Delegate™ 250 WG (100%) significantly reduced the number of punctures and galleries in grape berries. In combination with the food attractants Anamed™, 3% Biofruit, and 7% sugarcane molasses, the emulsion of the A. mucosa extract had a residual effect similar to that of the spinetoram insecticide, with a mortality rate of over 80% of A. fraterculus adults up to 14 days after application (DAA) in the absence of rain. Thus, acetogenin-rich formulations, especially from A. mucosa seeds, are useful alternatives for the integrated management of A. fraterculus in agricultural orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of on insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Alali FQ, Liu X-X, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540

    Article  CAS  PubMed  Google Scholar 

  • Amoabeng BW, Johnson AC, Gurr GM (2019) Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Appl Entomol Zool 54:1–19

    Article  Google Scholar 

  • Ansante TF, Ribeiro LP, Bicalho KU, Fernandes JB, Vieira PC, Vendramim JD (2015) Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Ind Crop Prod 74:969–976

    Article  CAS  Google Scholar 

  • Arouri R, Le-Goff G, Hemden H, Navarro-Llopis V, M’Saad M, Castanera P, Feyereisan R, Hernandez-Crespo P, Ortego F (2015) Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain. Pest Manag Sci 71:1281–1291

    Article  CAS  PubMed  Google Scholar 

  • Baronio CA, Bernardi D, Paranhos BAJ, Garcia FRM, Botton M (2018) Population suppression of Ceratitis capitata (Wiedemann) on table grapes using toxic baits. An Acad Bras Ciênc 90:3963–3973

    Article  CAS  PubMed  Google Scholar 

  • Baronio CA, Bernardi D, Schutze IX, Baldin M, Machota Júnior R, Garcia FRM, Botton M (2019) Toxicities of insecticidal toxic baits to control Ceratitis capitata (Diptera: Tephritidae): implications for field management. J Econ Entomol 194:1–8

    Google Scholar 

  • Bernardi D, Ribeiro LP, Andreazza F, Neitzke C, Oliveira EE, Botton M, Nava DE, Vendramim JD (2017) Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind Crop Prod 110:30–35

    Article  CAS  Google Scholar 

  • Biondi A, Zappala L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 9:e76548

    Article  CAS  Google Scholar 

  • Böckmann E, Köppler K, Hummel E, Vogt H (2014) Bait spray for control of European cherry fruitfly: an appraisal based on semi-field and field studies. Pest Manag Sci 70:502–509

    Article  CAS  PubMed  Google Scholar 

  • Borges R, Machota Júnior R, Boff MIC, Botton M (2015) Efeito de iscas tóxicas sobre Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). BioAssay 10:1–8

    Article  Google Scholar 

  • Bortoli LC, Machota Júnior R, Garcia FRM, Botton M (2016) Evaluation of food lures for fruit flies (Diptera: Tephritidae) captured in a citrus orchard of the Serra Gaúcha. Fla Entomol 99:381–384

    Article  Google Scholar 

  • Botton M, Arioli CJ, Machota Júnior R, Nunes MZ, Rosa JM (2016) Moscas-das-frutas na fruticultura de clima temperado: situação atual e perspectivas de controle através do emprego de novas formulações de iscas tóxicas e da captura massal. Agropecuária Catarinense 29:103–108

    Google Scholar 

  • Couso-Ferrer F, Arouri R, Beroiz B, Perera N, Cervera A, Navarro-Llopis V, Castañera P, Hernández-Crespo P, Ortego F (2011) Cross-resistance to insecticides in a malathion-resistant strait of Ceratitis capitata (Diptera: Tephritidae). J Econ Entomol 104:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Flores S, Gomez LE, Montoya P (2011) Residual control and lethal concentratios of GF-120 (spinosad) for Anastrepha spp. (Diptera: Tephritidae). J Econ Entomol 104:1885–1891

    Article  CAS  PubMed  Google Scholar 

  • Galm U, Sparks TC (2015) Natural product derived insecticides: discovery and development of spinetoram. J Ind Microbiol Biotechnol 43:185–193

    Article  CAS  PubMed  Google Scholar 

  • Geisler FCS, Martins LN, Treptow RCB, Baronio CA, Stupp P, Ribeiro LP, Garcia FRM, Bernardi D (2019) Laboratory and field assessments of lethal and sublethal toxicities of acetogenin-based formulated bioinsecticides against Zaprionus indianus (Diptera: Drosophilidae). Chilean J of Agric Res 74:501–511

    Article  Google Scholar 

  • Härter WR, Grützmacher AD, Nava DE, Gonçalves RS, Botton M (2010) Isca tóxica e disrupção sexual no controle da mosca-das-frutas sul-americana e da mariposa-oriental em pessegueiro. Pesqui Agropecu Bras 45:229–235

    Article  Google Scholar 

  • Härter WR, Botton M, Nava DE, Grützmacher AD, Gonçalves RS, Machota Júnior R, Bernardi D, Zanardi OZ (2015) Toxicities and residual effects of toxic baits containing spinosad or malathion to control the adult Anastrepha fraterculus (Diptera: Tephritidae). Fla Entomol 98:202–208

    Article  Google Scholar 

  • Hinde J, Demétrio CG (1998) Overdispersion: models and estimation. Computational Statistics & Data Analysis 27:151–170

    Article  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145

    Article  CAS  PubMed  Google Scholar 

  • Isman MB, Seffrin R (2014) Natural insecticides from the annonaceae: a unique example for developing biopesticides, advances in plant biopesticides. Springer:21–33

  • Lopes GN, Souza-Filho MF, Gotelli NJ, Lemos LJU, Godoy WAC, Zucchi RA (2015) Temporal overlap and co-occurrence in a guild of sub-tropical tephritid fruit flies. PLoS One 10:e0132124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machota Júnior R, Bortoli LC, Botton M, Grützmacher AD (2013) Fungi that cause rot in bunches of grape identified in adult fruit flies Anastrepha fraterculus (Diptera: Tephritidae). Chilean J of Agric Res 73:196–201

    Google Scholar 

  • Malavasi A (2000) Áreas livres ou de baixa prevalência. In: Malavasi A, Zucchi RA (eds) Moscas-das-frutas de importância econômica no Brasil: conhecimento básico e aplicado. Holos, Ribeirão Preto, pp 175–181

    Google Scholar 

  • Mangan RL (2009) Effects of bait age and prior protein feeding on cumulative time-dependent mortality of Anastrepha ludens (Diptera: Tephritidae) exposed to GF-120 spinosad baits. J Econ Entomol 112:1157–1163

    Article  Google Scholar 

  • Markussen MDK, Kristensen M (2011) Spinosad resistance in female Musca domestica L. from a field derived population. Pest Manag Sci 68:75–82

  • Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA (2015) Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. Int J Mol Sci 16:15625–15658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro-Llopis V, Vacas S, Sanchis J, Primo J, Alfaro C (2011) Chemosterilant baitstations coupled with sterile insect technique: an integrated strategy to control the Mediterranean fruitfly (Diptera: Tephritidae). J Econ Entomol 104:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135:370–384

    Article  Google Scholar 

  • Nunes AM, Costa KZ, Faggioni KM, Costa MLZ, Gonçalves RS, Walder JMM, Garcia MS, Nava DE (2013) Dietas artificiais para a criação de larvas e adultos de mosca-das-frutas sul-americana. Pesqui Agropecu Bras 48:1309–1314

    Article  Google Scholar 

  • Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad PVV, Reganold J, Rockstrom J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainbility 1:441–446

    Article  Google Scholar 

  • Prokopy RJ, Miller NW, Piñero JC, Oride L, Chaney N, Revis H, Vargas RI (2004) How effective is GF-120 fruit fly bait spray applied to border area sorghum plants for control of melon flies (Diptera: Tephritidae)? Fla Entomol 87:354–360

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing R foundation for statistical computing. Online: http://www.r-project.org/.

  • Raga A, Galdino LT (2018) Mosca das frutas: Atração fatal. Cultivar 109:20–23

    Google Scholar 

  • Raga A, Sato ME (2005) Effect of spinosad bait against Ceratitis capitata (Wied.) and Anastrepha fraterculus (Wied.) (Diptera: Tephritidae) in laboratory. Neotrop Entomol 34:815–822

    Article  CAS  Google Scholar 

  • Revis HC, Miller NW, Vargas RI (2004) Effects of aging and dilution on attraction and toxicity of GF120 fruit fly bait spray for melon fly control in Hawaii. J Econ Entomol 97:1659–1665

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LDP, Vendramim JD (2017) Effects of organic plant extracts on behavior of Sitophilus zeamais Mots. (Coleoptera: Curculionidae) adults. Brazilian Journal of Agriculture 92:186–197

    Google Scholar 

  • Ribeiro LDP, Vendramim JD, Bicalho KU, Andrade MS, Fernandes JB, Moral RA, Demétrio CGB (2013) Annona mucosa Jacq. (Annonaceae): a promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J Stored Prod Res 55:6–14

    Article  Google Scholar 

  • Ribeiro LDP, Zanardi OZ, Vendramim JD, Yamamoto PT (2014a) Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite. Exp Appl Acarol 64:87–98

    Article  CAS  Google Scholar 

  • Ribeiro LDP, Akhtar Y, Vendramim JD, Isman MB (2014b) Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusia ni and Myzus persicae. Crop Prot 6:100–106

    Article  Google Scholar 

  • Ribeiro LDP, Santos MS, Gonçalves GLP, Vendramim JD (2015) Toxicity of an acetogenin-based bioinsecticide against Diaphorina citri (Hemiptera: Liviidae) and its parasitoid Tamarixia radiata (Hymenoptera: Eulophidae). Fla Entomol 98:835–842

    Article  CAS  Google Scholar 

  • Ribeiro LDP, Vendramim JD, Gonçalves GP, Ansante TF, Gloria EM, Lopes JC, Mello-Silva R, Fernandes JB (2016) Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas 15:215–232

    Google Scholar 

  • SAS Institute (ed) (2011) Statistical analysis system: Getting started with the SAS learning, 9.2 edn. SAS Institute, Cary

    Google Scholar 

  • Schutze IX, Baronio CA, Baldin MM, Loek AE, Botton M (2018) Toxicity and residual effects of toxic baits with spinosyns on the South American fruit fly. Pesqui Agropecu Bras 53:144–151

    Article  Google Scholar 

  • Scoz PL, Botton M, Garcia MS (2004) Controle químico de Anastrepha fraterculus (Wied.) (Diptera: Tephritidae) em laboratório. Cienc Rural 34:1689–1694

    Article  Google Scholar 

  • Souza CM, Baldin ELL, Ribeiro LDP, Santos TLB, Silva IF, Morando R, Vendramim JD (2019) Antifeedant and growth inhibitory effects of annonaceae derivatives on Helicoverpa armigera (Hübner). Crop Prot 121:45–50

    Article  Google Scholar 

  • Stark JD, Vargas R, Miller N (2004) Toxicity of spinosad in protein bait to three economically important tephritid fruit fly species (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae). J Econ Entomol 97:911–915

    Article  CAS  PubMed  Google Scholar 

  • Tormo JR, Gallardo T, Gonzalez MC, Bermejo A, Cabedo N, Andreu I, Estornell E (1999) Annonaceous acetogenins as inhibitors of mitochondrial complex I. Current Topics in Phytochemistry 2:69–90

    CAS  Google Scholar 

  • Vontas J, Hernández-Crespo P, Margaritopoulos JT, Ortego F, Feng H-T, Mathiopoulos KD, Hsu J-C (2011) Insecticide resistance in tephritid flies. Pestic Biochem Phys 100:199–205

    Article  CAS  Google Scholar 

  • Yee LW, Alston DG (2016) Sucrose mixed with spinosad enhances kill and reduces oviposition of Rhagoletis indifferens (Diptera: Tephritidae) under low food availability. J Entomol Sci 51:101–112

    Article  Google Scholar 

Download references

Author contribution statement

DB, DEN, and LdPR planed and designed research; PS, DdCO, LNM, and FCSG conducted experiments; DB, MR, LdPR, and DEN conducted statistical analysis and wrote the manuscript. All authors read and approved the manuscript.

Funding

The authors would like to thank the Rio Grande do Sul Research Support Foundation (FAPERGS, project 17 / 2551-0000778-6) for their financial support for research execution and scholarship provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bernardi.

Additional information

Edited by Pedro Takao Yamamoto – ESALQ/USP

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stupp, P., Rakes, M., Oliveira, D.C. et al. Acetogenin-Based Formulated Bioinsecticides on Anastrepha fraterculus: Toxicity and Potential Use in Insecticidal Toxic Baits. Neotrop Entomol 49, 292–301 (2020). https://doi.org/10.1007/s13744-019-00747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00747-9

Keywords

Navigation