Skip to main content
Log in

Mode localization phenomenon of functionally graded nanobeams due to surface integrity

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This is the first study on the mode localization and surface stress-based deflection phenomena of functionally graded (FG) nanobeams due to surface integrity. A new model for FG nanobeams with engineering surfaces is developed. The engineering surface is considered a different material phase with a surface texture (i.e. waviness and roughness). The initial curvatures of cantilever, simple supported, and clamped–clamped FG nanobeams due to surface residual stresses are determined. It is revealed that the initial curvature increases with an increase in the slope of the surface texture and/or a decrease in the surface roughness. Moreover, the natural frequencies and mode shapes of FG nanobeams are derived depending on the surface’s texture and mechanical properties. It is observed that natural frequencies of FG beams may decrease or increase due surface roughness. Thus, as a first prospect, the surface roughness allows the vibration energy to propagate over the beam length and hence its natural frequency decreases resulting in a zero-frequency mode. As for the other prospect, surface roughness inhibits the propagation of the vibration energy through the beam length leading to a mode localization and an increase in the natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alshorbagy, A.E., Alieldin, S.S., Shaat, M., Mahmoud, F.F.: Finite element analysis of the deformation of functionally graded plates under thermomechanical loads. Math. Probl. Eng. 2013, 569781 (2013)

    MathSciNet  MATH  Google Scholar 

  • Ansari, R., Ashrafi, M.A., Pourashraf, T., Sahmani, S.: Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronaut. 109, 42–51 (2015)

    Google Scholar 

  • Astakhov, V.P.: Surface integrity-definition and importance in functional per- formance. In: Davim, J.P. (ed.) Surface Integrity in Machining. Springer, London (2010)

    Google Scholar 

  • Bellows, G., Tishler, N.: Introduction to surface integrity. GEC Report (1970)

  • Bendiksen, O.O.: Mode localization phenomena in large space structures. AIAA J. 25(9), 1241–1248 (1987)

    Google Scholar 

  • Cai, G.Q., Lin, Y.K.: Localization of wave propagation in disordered periodic structures. AIAA J. 29(3), 450–456 (1991)

    MathSciNet  Google Scholar 

  • Cai, C.W., Cheung, Y.K., Chan, H.C.: Mode localization phenomena in nearly periodic systems. J. Appl. Mech. Trans. ASME 62(1), 141–149 (1995)

    MATH  Google Scholar 

  • Chan, H.C., Liu, J.K.: Mode localization and frequency loci veering in disordered engineering structures. Chaos Solitons Fractals 11, 1493–1504 (2000)

    MATH  Google Scholar 

  • Chen, X., Meguid, S.A.: Snap-through buckling of initially curved microbeam subject to an electrostatic force. Proc. R. Soc. A 471, 20150072 (2015a)

    MathSciNet  MATH  Google Scholar 

  • Chen, X., Meguid, S.A.: On the parameters which govern the symmetric snap-through buckling behavior of an initially curved microbeam. Int. J. Solids Struct. 66, 77–87 (2015b)

    Google Scholar 

  • Chen, X., Meguid, S.A.: Asymmetric bifurcation of initially curved nanobeam. J. Appl. Mech. 82, 091003 (2015c)

    Google Scholar 

  • Chen, X., Meguid, S.A.: Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 472, 20150597 (2016)

    Google Scholar 

  • Dehrouyeh-Semnani, A.M., Mostafaei, H., Nikkhah-Bahrami, M.: Free flexural vibration of geometrically imperfect functionally graded microbeams. Int. J. Eng. Sci. 105, 56–79 (2016)

    MathSciNet  MATH  Google Scholar 

  • Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, New York (1988)

    Google Scholar 

  • Fishman, G., Calecki, D.: Influence of surface roughness on the conductivity of metallic and semiconducting quasi-2-dimensional structures. Phys. Rev. B 43(14), 11851–11855 (1991)

    Google Scholar 

  • Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295(1442), 300–319 (1966)

    Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surface. Arch. Ration. Mech. Anal. 57, 291–323 (1975a)

    MathSciNet  MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Addenda to our paper: a continuum theory of elastic material surface. Arch. Ration. Mech. Anal. 59, 389–390 (1975b)

    MATH  Google Scholar 

  • Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    MATH  Google Scholar 

  • Hodges, C.H.: Confinement of vibration by structural irregularity. J. Sound Vib. 82(3), 411–424 (1982)

    Google Scholar 

  • Hosseini-Hashemi, S., Nazemnezhad, R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B 52, 199–206 (2013)

    Google Scholar 

  • Hosseini-Hashemi, S., Nahas, I., Fakher, M., Nazemnezhad, R.: Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  • Huang, Q., Ren, J.X.: Surface integrity and its effects on the fatigue life of the nickel-based superalloy GH33A. Int. J. Fatigue 13(4), 322–326 (1991)

    Google Scholar 

  • Joseph, S., Aluru, N.R.: Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2), 452–458 (2008)

    Google Scholar 

  • Kim, D.-O., Lee, I.-W.: A study on mode localization phenomena: influences of the stiffness and the mass of the coupler on mode localization. J. Sound Vib. 216(1), 53–73 (1998)

    Google Scholar 

  • Koizumi, M.: FGM activities in Japan. Composites 28, 1–4 (1997)

    Google Scholar 

  • Li, M., Wang, G.-C., Min, H.-G.: Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. J. Appl. Phys. 83(10), 5313–5320 (1998)

    Google Scholar 

  • Li, Y., Meguid, S.A., Fu, Y., Xu, D.: Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 470, 20130473 (2014)

    MATH  Google Scholar 

  • Liu, J.K., Zhao, L.C., Fang, T.: A geometric theory in investigation on mode localization and frequency loci veering phenomena. Acta Mech. Solida Sin. 8(4), 349–355 (1995)

    Google Scholar 

  • Liu, H.J., Zhao, L.C., Chen, J.Y.: Asymmetric effects on mode localization of symmetric structures. J. Sound Vib. 194(4), 645–651 (1996)

    Google Scholar 

  • Llanes, L., Casas, B., Idanez, E., Marsal, M., Anglada, M.: Surface integrity effects on the fracture resistance of electrical-discharge-machined WC–Co cemented carbides. J. Am. Ceram. Soc. 87(9), 1687–1693 (2004)

    Google Scholar 

  • Lü, C.F., Chen, W.Q., Lim, C.W.: Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos. Sci. Technol. 69, 1124–1130 (2009a)

    Google Scholar 

  • Lü, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultrathin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009b)

    MATH  Google Scholar 

  • Mahmoud, F.F., Shaat, M.: A new mindlin FG plate model incorporating microstructure and surface energy effects. Struct. Eng. Mech. 53(1), 105–130 (2015)

    Google Scholar 

  • Murdoch, A.I.: Some fundamental aspects of surface modeling. J. Elast. 80, 33–52 (2005)

    MATH  Google Scholar 

  • Natsiavas, S.: Mode localization and frequency veering in a non-conservative mechanical system with dissimilar components. J Sound Vibration 165(1), 137–147 (1993)

    MathSciNet  MATH  Google Scholar 

  • Paik, S., Gupta, S.S., Batra, R.C.: Localization of buckling modes in plates and laminates. Compos. Struct. 120, 79–89 (2015)

    Google Scholar 

  • Peressadko, A.G., Hosoda, N., Persson, B.N.J.: Influence of surface roughness on adhesion between elastic bodies. Phys. Rev. Lett. 95(12), 124301 (2005)

    Google Scholar 

  • Pierre, C.: Mode localization and eigenvalue loci veering phenomena in disordered structures. J. Sound Vib. 126(3), 485–502 (1988)

    MathSciNet  Google Scholar 

  • Pierre, C., Dowell, E.H.: Localization of vibration by structural irregularity. J Sound Vib. 114(3), 549–564 (1987)

    Google Scholar 

  • Pierre, C., Tang, D.M., Dowell, E.H.: Localized vibrations of disordered multi-span beams, theory and experiment. Am. Inst. Aeronaut. Astronaut. Journal 25(9), 1249–1257 (1987)

    Google Scholar 

  • Pierre, C., Castanier, M.P., Chen, W.J.: Wave localization in multi-coupled periodic structures: application to truss beams. Appl. Mech. Rev. 49(2), 65–86 (1996)

    Google Scholar 

  • Pradiptya, I., Ouakad, H.M.: Thermal effect on the dynamic behavior of nanobeam resonator assuming size-dependent higher-order strain gradient theory. Microsyst. Technol. (2017). https://doi.org/10.1007/s00542-017-3671-7

    Article  Google Scholar 

  • Ramulu, M., Paul, G., Patel, J.: EDM surface effects on the fatigue strength of a 15 vol% SiCp/Al metal matrix composite material. Compos. Struct. 54(1), 79–86 (2001)

    Google Scholar 

  • Sari, M., Shaat, M., Abdelkefi, A.: Frequency and mode veering phenomena of axially functionally graded non-uniform beams with nonlocal residuals. Compos. Struct. 163, 280–292 (2017)

    Google Scholar 

  • Shaat, M.: Effects of surface integrity on the mechanics of ultra-thin films. Int. J. Solids Struct. 136–137, 259–270 (2018a)

    Google Scholar 

  • Shaat, M.: Effects of processing force on performance of nano-resonators produced by magnetron sputtering deposition. Physica E 104, 42–48 (2018b)

    Google Scholar 

  • Shaat, M., Abdelkefi, A.: Reporting buckling strength and elastic properties of nanowires. J. Appl. Phys. 120, 235104 (2016)

    Google Scholar 

  • Shaat, M., Faroughi, S.: Influence of surface integrity on vibration characteristics of microbeams. Eur. J. Mech. A Solids 71, 365–377 (2018)

    MathSciNet  MATH  Google Scholar 

  • Shaat, M., Mohamed, S.A.: Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int. J. Mech. Sci. 84, 208–217 (2014)

    Google Scholar 

  • Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S., Meletis, E.I.: Size-dependent analysis of functionally graded ultra-thin films. Struct. Eng. Mechanics 44(4), 431–448 (2012)

    Google Scholar 

  • Shaat, M., Mahmoud, F.F., Alieldin, S.S., Alshorbagy, A.E.: Finite element analysis of functionally graded nano-scale films. Finite Elem. Anal. Des. 74, 41–52 (2013a)

    MathSciNet  MATH  Google Scholar 

  • Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S.: Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int. J. Mech. Sci. 75, 223–232 (2013b)

    Google Scholar 

  • Shaat, M., Eltaher, M.A., Gad, A.I., Mahmoud, F.F.: Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies. Int. J. Mech. Sci. 77, 356–364 (2013c)

    Google Scholar 

  • Sharabiani, P.A., Yazdi, M.R.H.: Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. Part B 45, 581–586 (2013)

    Google Scholar 

  • Sharman, A.R.C., Aspinwall, D.K., Dewes, R.C., Clifton, D., Bowen, P.: The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide. Int. J. Mach. Tools Manuf. 41, 1681–1685 (2001)

    Google Scholar 

  • Sinnott, M.M., Hoeppner, D.W., Romney, E., Dew, P.A.: Effects of surface in- tegrity on the fatigue life of thin flexing membranes. ASAIO Trans. 35(3), 687–690 (1989)

    Google Scholar 

  • Triantafyllou, M.S., Triantafyllou, G.S.: Frequency coalescence and mode localization phenomena: a geometric theory. J Sound Vib. 150(3), 485–500 (1991)

    MathSciNet  Google Scholar 

  • Verma, D., Gupta, S.S., Batra, R.C.: Vibration mode localization in single- and multi-layered graphene nanoribbons. Comput. Mater. Sci. 95, 41–52 (2014)

    Google Scholar 

  • Wang, Z.-Q., Zhao, Y.-P.: Self-instability and bending behaviors of nano plates. Acta Mech. Solida Sin. 22(6), 630–643 (2009)

    MathSciNet  Google Scholar 

  • Wang, Z.-Q., Zhao, Y.-P., Huang, Z.-P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Google Scholar 

  • Woo, J., Meguid, S.A.: Nonlinear analysis of functionally graded plates and shallow shells. Int. J. Solids Struct. 38(42–43), 7409–7421 (2001)

    MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Liew, K.M.: Thermomechanical postbuckling analysis of functionally graded plates and shallow cylindrical shells. Acta Mech. 165, 99–115 (2003)

    MATH  Google Scholar 

  • Woo, J., Meguid, S.A., Ong, L.S.: Nonlinear free vibration behavior of functionally graded plates. J. Sound Vib. 289, 595–611 (2006)

    Google Scholar 

  • Xie, W.C.: Buckling mode localization in randomly disordered multispan continuous beams. AIAA J. 33(6), 1142–1149 (1995)

    MATH  Google Scholar 

  • Zaltin, N., Field, M.: Procedures and precautions in machining titanium alloys. Titan. Sci. Technol. 1, 489–504 (1973)

    Google Scholar 

  • Zang, J.-L., Zhao, Y.-P.: A diffusion and curvature dependent surface elastic model with application to stress analysis of anode in lithium ion battery. Int. J. Eng. Sci. 61, 156–170 (2012)

    MathSciNet  MATH  Google Scholar 

  • Zhao, Y.-P., Wang, L.S., Yu, T.X.: Mechanics of adhesion in MEMS—a review. J. Adhes. Sci. Technol. 17(4), 519–546 (2003)

    Google Scholar 

  • Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sensors Actuators A 249, 93–111 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shaat.

Appendices

Appendix 1

The stiffnesses \(D\left( x \right)\), \(K\left( x \right)\), \(B\left( x \right)\), and \(q\left( x \right)\) forming the equation of motion of the FG beam [Eq. (15)] are derived as follows. First, Eq. (18) is substituted into Eq. (14), and the integrations are then performed to obtain:

$$\begin{aligned} D_{B} \left( x \right) & = 2\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right)^{3} \left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right) \\ D_{S} \left( x \right) & = 2\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right)^{2} \left( {E_{S}^{ + } + E_{S}^{ - } } \right) + 2\left( {\frac{h}{2} + P\left( x \right)} \right)^{3} \left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right) \\ q\left( x \right) & = 2\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right)\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right) + 2\left( {\frac{h}{2} + P\left( x \right)} \right)^{2} \left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\kappa \left( n \right) \\ \end{aligned}$$
(51)

where \(\xi \left( n \right)\) and \(\kappa \left( n \right)\) are two hypergeometric functions only depend on the grading parameter, \(n\). These functions are defined as follows:

$$\begin{aligned} \xi \left( n \right) & = \frac{{2^{ - n} }}{n + 3}\left[ {{\text{hypergeom}}\left( {\left[ { - n, - n - 3} \right],\left[ { - n, - 2} \right], - 1} \right) + \left( { - 1} \right)^{n}\, {\text{hypergeom}}\left( {\left[ { - n, - n - 3} \right],\left[ { - n, - 2} \right],1} \right)} \right] \\ \kappa \left( n \right) & = \frac{{\left( { - 1} \right)^{n} \,{\text{hypergeom}}\left( {\left[ { - n - 2} \right],\left[ {} \right],1} \right)}}{{2^{n} \left( {n + 2} \right)\left( {n + 1 } \right)}}\left[ { - 2n - 3} \right] + \frac{2n}{{\left( {n + 2} \right)\left( {n + 1} \right)}} \\ \end{aligned}$$
(52)

According to Eq. (51) and Eq. (16), the stiffnesses, \(K\left( x \right)\) and \(B\left( x \right)\) can be derived as follows:

$$\begin{aligned} K\left( x \right) & = 4\left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right)\left( {\frac{dP\left( x \right)}{dx}} \right)\left[ {3\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right)^{2} + \left( {\frac{h}{2} + P\left( x \right)} \right)^{3} } \right] \\ & \quad + 4\left( {E_{S}^{ + } + E_{S}^{ - } } \right)\left( {\frac{dP\left( x \right)}{dx}} \right)\left[ {2\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right) + \left( {\frac{h}{2} + P\left( x \right)} \right)^{2} } \right] \\ & \quad + 12\left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right)\left( {\frac{dP\left( x \right)}{dx}} \right)\left( {\frac{h}{2} + P\left( x \right)} \right)^{2} \\ B\left( x \right) & = 6\left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right)\left( {\frac{dP\left( x \right)}{dx}} \right)^{2} \left[ {\left( {\frac{h}{2} + P\left( x \right)} \right)^{2} + 2\left( {\frac{b}{2} + P\left( x \right)} \right)\left( {\frac{h}{2} + P\left( x \right)} \right) + \left( {\frac{h}{2} + P\left( x \right)} \right)^{2} } \right] \\ & \quad + 4\left( {E_{S}^{ + } + E_{S}^{ - } } \right)\left( {\frac{dP\left( x \right)}{dx}} \right)^{2} \left[ {2\left( {\frac{h}{2} + P\left( x \right)} \right) + \left( {\frac{b}{2} + P\left( x \right)} \right)} \right] \\ & \quad + 12\left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right)\left( {\frac{dP\left( x \right)}{dx}} \right)^{2} \left( {\frac{h}{2} + P\left( x \right)} \right) \\ \end{aligned}$$
(53)

Appendix 2

The stiffnesses \(D\), \(K\), and \(B\) and the residual loads \(S_{f}\), \(q\), and \(Q\) appeared in Eqs. (20) and (21) are derived utilizing the average parameters of the surface texture defined in Eq. (20) as follows:

$$\begin{aligned} D & = 2\left( {\frac{b}{2} + W_{a} + R_{a} } \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{3} \left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right) \\ & \quad + 2\left( {\frac{b}{2} + W_{a} + R_{a} } \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} \left( {E_{S}^{ + } + E_{S}^{ - } } \right) \\ & \quad + 2\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{3} \left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right) \\ \end{aligned}$$
(54)
$$\begin{aligned} K & = 4\left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right)\left( {WS + RS} \right)\left[ {3\left( {\frac{b}{2} + W_{a} + R_{a} } \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} + \left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{3} } \right] \\ & \quad + 4\left( {E_{S}^{ + } + E_{S}^{ - } } \right)\left( {WS + RS} \right)\left[ {2\left( {\frac{b}{2} + W_{a} + R_{a} } \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right) + \left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} } \right] \\ & \quad + 12\left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right)\left( {WS + RS} \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} \\ \end{aligned}$$
(55)
$$\begin{aligned} B & = 6\left( {\frac{2}{3}E^{ + } + \left( {E^{ - } - E^{ + } } \right)\xi \left( n \right)} \right)\left( {WS + RS} \right)^{2} \left[ {\left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} + 2\left( {\frac{b}{2} + W_{a} + R_{a} } \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right) + \left( {\frac{h}{2} + W_{a} + R_{a} } \right)^{2} } \right] \\ & \quad + 4\left( {E_{S}^{ + } + E_{S}^{ - } } \right)\left( {WS + RS} \right)^{2} \left[ {2\left( {\frac{h}{2} + W_{a} + R_{a} } \right) + \left( {\frac{b}{2} + W_{a} + R_{a} } \right)} \right] \\ & \quad + 12\left( {\frac{2}{3}E_{S}^{ + } + \left( {E_{S}^{ - } - E_{S}^{ + } } \right)\xi \left( n \right)} \right)\left( {WS + RS} \right)^{2} \left( {\frac{h}{2} + W_{a} + R_{a} } \right) \\ \end{aligned}$$
(56)
$$q = 2\left( {\frac{b}{2} + R_{a} + W_{a} } \right)\left( {\frac{h}{2} + R_{a} + W_{a} } \right)\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right) + 2\left( {\frac{h}{2} + R_{a} + W_{a} } \right)^{2} \left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\kappa \left( n \right)$$
(57)
$$\begin{aligned} Q & = 2\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\left( {WS + RS} \right)\left[ {\left( {\frac{b}{2} + W_{a} + R_{a} } \right) + \left( {\frac{h}{2} + W_{a} + R_{a} } \right)} \right] \\ & \quad + 4\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\left( {WS + RS} \right)\left( {\frac{h}{2} + W_{a} + R_{a} } \right)\kappa \left( n \right) \\ \end{aligned}$$
(58)
$$S_{f} = 4\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\left( {WS + RS} \right)^{2} + 4\left( {\sigma_{S}^{ - } - \sigma_{S}^{ + } } \right)\left( {WS + RS} \right)^{2} \kappa \left( n \right)$$
(59)

It should be mentioned that the higher-order gradients of the surface profile, \(P\left( x \right)\), are neglected as recommended by the author in Shaat (2018a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaat, M. Mode localization phenomenon of functionally graded nanobeams due to surface integrity. Int J Mech Mater Des 15, 245–270 (2019). https://doi.org/10.1007/s10999-018-9421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9421-x

Keywords

Navigation