Skip to main content
Log in

Functions of bounded fractional variation and fractal currents

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Extending the notion of bounded variation, a function \(u \in L_c^1(\mathbb {R}^n)\) is of bounded fractional variation with respect to some exponent \(\alpha \) if there is a finite constant \(C \ge 0\) such that the estimate

$$\begin{aligned} \biggl |\int u(x) \det D(f,g_1,\ldots ,g_{n-1})_x \, dx\biggr | \le C\text{ Lip }^\alpha (f) \text{ Lip }(g_1) \cdots \text{ Lip }(g_{n-1}) \end{aligned}$$

holds for all Lipschitz functions \(f,g_1,\ldots ,g_{n-1}\) on \(\mathbb {R}^n\). Among such functions are characteristic functions of domains with fractal boundaries and Hölder continuous functions. We characterize functions of bounded fractional variation as a certain subspace of Whitney’s flat chains and as multilinear functionals in the setting of Ambrosio–Kirchheim currents. Consequently we discuss extensions to Hölder differential forms, higher integrability, an isoperimetric inequality, a Lusin type property and change of variables. As an application we obtain sharp integrability results for Brouwer degree functions with respect to Hölder maps defined on domains with fractal boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. L. Ambrosio, N. Fusco and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  2. L. Ambrosio and B. Kirchheim. Currents in metric spaces. Acta Math. 185 (2000), 1–80

    Article  MathSciNet  MATH  Google Scholar 

  3. C. De Lellis and D. Inauen. Fractional Sobolev regularity for the Brouwer degree. Commun. Partial Differ. Equ. 24 (2017), 1510–1523

    Article  MathSciNet  MATH  Google Scholar 

  4. T. De Pauw. Approximation by polyhedral \(G\) chains in Banach spaces. Z. Anal. Anwend. 33 (2014), 311–334

    Article  MathSciNet  MATH  Google Scholar 

  5. T. De Pauw and R. Hardt. Rectifiable and flat \(G\) chains in metric spaces. Am. J. Math. 134 (2012), 1–69

    Article  MathSciNet  MATH  Google Scholar 

  6. G. De Philippis and F. Rindler. On the structure of \(\mathscr {A}\)-free measures and applications. Ann. Math. 184 (2016), 1017–1039

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Federer. Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, Band 153. Springer, Berlin (1969).

    Google Scholar 

  8. M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces (with appendices by M. Katz, P. Pansu and S. Semmes), Vol. 152 of Prog. Math., Birkhäuser (1999).

  9. Y. Guseynov. Integrable boundaries and fractals for Hölder classes; the Gauss–Green theorem. Calc. Var. PDE 55 (2016), 1–27

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Harrison and A. Norton. The Gauss–Green theorem for fractal boundaries. Duke Math. J. 67 (1992), 575–588

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Lang. Local currents in metric spaces. J. Geom. Anal. 21 (2011), 683–742

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Mattila. Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge (1995).

    Book  Google Scholar 

  13. H. Olbermann. Integrability of the Brouwer degree for irregular arguments. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2016), 933–959

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Outerelo and J.M. Ruiz. Mapping degree theory. Graduate Studies in Mathematics, Vol. 108. American Mathematical Society, Providence (2009).

    MATH  Google Scholar 

  15. T. Riviére and D. Ye. Resolutions of the prescribed volume form equation. Nonlinear Differ. Equ. Appl. 3 (1996), 323–369

    Article  MathSciNet  MATH  Google Scholar 

  16. E.M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970).

    MATH  Google Scholar 

  17. S. Wenger. Isoperimetric Inequalities of Euclidean Type and Applications. Ph.d. thesis, ETH Zürich (2004).

  18. H. Whitney. Geometric Integration Theory. Princeton University Press, Princeton (1957).

    Book  MATH  Google Scholar 

  19. L.C. Young. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), 251–282

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Züst. Currents in snowflaked metric spaces. Ph.d. thesis, ETH Zürich (2011).

  21. R. Züst. Integration of Hölder forms and currents in snowflake spaces. Calc. Var. PDE 40 (2011), 99–124

    Article  MATH  Google Scholar 

  22. R. Züst. A Solution of Gromov’s Hölder Equivalence Problem for the Heisenberg Group (2016). arXiv:1601.00956.

Download references

Acknowledgements

I would like to thank Valentino Magnani, Eugene Stepanov and Dario Trevisan for useful feedback and suggestions, and an anonymous referee for a number of useful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Züst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Züst, R. Functions of bounded fractional variation and fractal currents. Geom. Funct. Anal. 29, 1235–1294 (2019). https://doi.org/10.1007/s00039-019-00503-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-019-00503-6

Keywords and phrases

Mathematics Subject Classification

Navigation