Skip to main content
Log in

Structured linear reformulation of binary quadratically constrained quadratic programs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper presents a new linear reformulation to convert a binary quadratically constrained quadratic program into a 0–1 mixed integer linear program. By exploiting the symmetric structure of the quadratic terms embedded in the objective and constraint functions, the proposed linear reformulation requires fewer variables and constraints than other known O(n)-sized linear reformulations. Theoretical proof shows the proposed reformulation provides a tighter linearization for each quadratic term comparing to other known linear reformulations. Extensive numerical experiments support the superior computational efficiency of the proposed reformulation in terms of the running time and number of nodes explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams, W.P., Forrester, J.R.: A simple recipe for concise mixed 0–1 linearizations. Oper. Res. Lett. 33(1), 55–61 (2005)

    Article  Google Scholar 

  2. Adams, W.P., Forrester, J.R.: Linear forms of nonlinear expressions: new insights on old ideas. Oper. Res. Lett. 35(4), 510–518 (2007)

    Article  MathSciNet  Google Scholar 

  3. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming problems. Manag. Sci. 32(10), 1274–1290 (1986)

    Article  MathSciNet  Google Scholar 

  4. Billionnet, A., Elloumi, S., Plateau, M.C.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the qcr method. Discrete Appl. Math. 157(6), 1185–1197 (2009)

    Article  MathSciNet  Google Scholar 

  5. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2007)

    Article  MathSciNet  Google Scholar 

  6. Billionnet, A., Elloumi, S., Lambert, A.: Exact quadratic convex reformulations of mixed-integer quadratically constrained problems. Math. Program. 158(1), 235–266 (2016)

    Article  MathSciNet  Google Scholar 

  7. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

    MathSciNet  Google Scholar 

  8. Cafieri, S., Omheni, R.: Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes. Eur. J. Oper. Res. 260(1), 283–290 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chaovalitwongse, W., Pardalos, P.M., Prokopyev, O.A.: A new linearization technique for multi-quadratic 0–1 programming problems. Oper. Res. Lett. 32(6), 517–522 (2004)

    Article  MathSciNet  Google Scholar 

  10. CPLEX User’s MANUAL. IBM ILOG CPLEX Optimization Stutio, Version 12 Release 8. 1987–2018

  11. Galli, L., Letchford, N.A.: A compact variant of the QCR method for quadratically constrained quadratic 0–1 programs. Optim. Lett. 8(4), 1213–1224 (2014)

    Article  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Association for Symbolic Logic, Poughkeepsie (1983)

    MATH  Google Scholar 

  13. Gharibi, W., Xia, Y.: A tight linearization strategy for zero-one quadratic programming problems. Int. J. Comput. Sci. Issues 9(3), 294–299 (2012)

    Google Scholar 

  14. Glover, F.: Improved linear integer programming formulations of nonlinear integer problems. Manag. Sci. 22(4), 455–460 (1975)

    Article  MathSciNet  Google Scholar 

  15. Glover, F., Woolsey, E.: Further reduction of zero-one polynomial programming problems to zero-one linear programming problems. Oper. Res. 21(1), 156–161 (1973)

    Article  MathSciNet  Google Scholar 

  16. Glover, F., Woolsey, E.: Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 22(1), 180–182 (1974)

    Article  Google Scholar 

  17. Kochenberger, G., Hao, J.K., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)

    Article  MathSciNet  Google Scholar 

  18. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)

    Article  MathSciNet  Google Scholar 

  19. McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Manag. Sci. 26(3), 282–296 (1980)

    Article  MathSciNet  Google Scholar 

  20. Nie, T., Fang, S.C., Deng, Z., Lavery, J.E.: On linear conic relaxation of discrete quadratic programs. Optim. Methods Softw. 31(4), 737–754 (2016)

    Article  MathSciNet  Google Scholar 

  21. Pardalos, P.M., Chaovalitwongse, W., Iasemidis, L.D., Chris Sackellares, J., Shiau, D.S., Carney, P.R., Prokopyev, O.A., Yatsenko, V.A.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2), 365–385 (2004)

    Article  MathSciNet  Google Scholar 

  22. Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155(5), 623–648 (2007)

    Article  MathSciNet  Google Scholar 

  23. Sahinidis, V.N.: BARON 17.8.9: Global Optimization of Mixed-Integer Nonlinear Programs, User’s Manual (2017)

  24. Sherali, H.D., Smith, J.C.: An improved linearization strategy for zero-one quadratic programming problems. Optim. Lett. 1(1), 33–47 (2007)

    Article  MathSciNet  Google Scholar 

  25. Watters, L.J.: Reduction of integer polynomial programming problems to zero-one linear programming problems. Oper. Res. 15(6), 1171–1174 (1967)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been sponsored by US Army Research Office Grant #W911NF-15-1-0223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiantian Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Fang, SC., Nie, T. et al. Structured linear reformulation of binary quadratically constrained quadratic programs. Optim Lett 14, 611–636 (2020). https://doi.org/10.1007/s11590-018-1361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1361-8

Keywords

Navigation