Skip to main content

Advertisement

Log in

Influence of climate change on the ability of a cover with capillary barrier effects to control acid generation

Influence des changements climatiques sur la capacité d’une couverture à effets de barrière capillaire à contrôler la génération d’acidité

Influencia del cambio climático en la capacidad de una cubierta con efectos de barrera capilar para controlar la generación de ácido

气候变化对毛细阻滞式覆盖层控制产酸能力的影响

Influências das mudanças climáticas na eficiência da cobertura com efeitos de barreira capilar no controle da geração ácida

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Annual precipitation, temperature, and the frequency and duration of drought events are expected to increase in Québec (Canada) south of the 50th parallel as a result of climate change. Oxygen barriers such as covers with capillary barrier effects (CCBE), which are used to control acid mine drainage (AMD), are sensitive to climate change. Increases in precipitation may have positive effects on maintaining the saturation of a moisture-retaining layer (MRL), which is necessary for reducing oxygen fluxes to reactive tailings; however, drought events could cause temporary desaturation of a MRL and, consequently, increase the potential for acid generation. The Lorraine mine site, in western Québec, was reclaimed with a CCBE in 1999 and was used as a case study to assess the effects of climate change on reclamation performance. A two-dimensional numerical model was developed and validated using 3 years of meteorological and hydrogeological data. Numerical simulations were performed to assess the CCBE’s performance, considering the influence of: (1) climatic conditions (i.e., precipitation, temperature, relative humidity, wind speed, albedo and solar radiation) by 2100 for three different climate-change scenarios, and (2) extreme drought events. Performance targets were reached for all tested climate-change scenarios, thus indicating that the Lorraine CCBE design is robust with respect to climate change and extreme droughts. More broadly, this study illustrates how numerical simulations can be used to quantify the influence of climate change on the long-term ability of CCBEs to control the generation of AMD.

Résumé

En raison des changements climatiques, les températures et les précipitations annuelles ainsi que la fréquence et la durée des évènements de sécheresse devraient augmenter au sud du 50ème parallèle, au Québec. Les barrières à l’oxygène qui sont utilisées pour contrôler la génération de drainage minier acide (DMA), telles que les couvertures à effets de barrière capillaire (CEBC), pourraient être affectées par les changements climatiques. L’augmentation des précipitations pourraient avoir un impact positif sur le degré de saturation de la couche de rétention d’eau et sur la capacité à limiter le flux d’oxygène vers les rejets réactifs, alors que les évènements de sécheresse pourraient désaturer temporairement cette couche et donc nuire à sa capacité à contrôler la génération de DMA. Le site minier Lorraine, situé à l’ouest du Québec, a été restauré à l’aide d’une CEBC en 1999 et a été utilisé comme site d’étude pour évaluer plus précisément les effets des changements climatiques sur la performance de ce type de couverture. Un modèle numérique en deux dimensions a été développé et validé en utilisant 3 années de données météorologiques et hydrogéologiques. Des modélisations numériques ont ensuite été réalisées afin d’évaluer la performance de la CEBC en tenant compte de l’influence: (1) des conditions climatiques (i.e., précipitations, température, humidité relative, vitesse du vent, albédo et rayonnement solaire) d’ici 2100 selon trois scénarios de changements climatiques différents, et (2) des événements de sécheresse extrêmes. Les objectifs de performance ont été atteints pour tous les scénarios testés, indiquant ainsi que la conception de la CEBC du site Lorraine est robuste face aux changements climatiques et aux sécheresses extrêmes. De façon plus générale, cette étude montre la capacité des simulations numériques à quantifier l’influence des changements climatiques sur la performance à long terme des CEBC à contrôler la génération de DMA.

Resumen

Se prevé que las precipitaciones anuales, la temperatura y la frecuencia y duración de las sequías aumentarán en Québec (Canadá), al sur del paralelo 50, como consecuencia del cambio climático. Las barreras de oxígeno, como las cubiertas con efecto de barrera capilar (CCBE), que se utilizan para controlar el drenaje ácido de las minas (AMD), son sensibles al cambio climático. El aumento de las precipitaciones puede tener efectos positivos en el mantenimiento de la saturación de una capa de retención de humedad (MRL), que es necesaria para reducir los flujos de oxígeno a los relaves reactivos; sin embargo, los eventos de sequía podrían causar la desaturación temporal de un MRL y, en consecuencia, aumentar el potencial de generación de ácido. La mina de Lorraine, en el oeste de Québec, fue recuperada con un CCBE en 1999 y se utilizó como estudio de caso para evaluar los efectos del cambio climático en el desempeño de la recuperación. Se desarrolló y validó un modelo numérico bidimensional utilizando 3 años de datos meteorológicos e hidrogeológicos. Se realizaron simulaciones numéricas para evaluar el rendimiento del CCBE, teniendo en cuenta la influencia de: (1) las condiciones climáticas (es decir, precipitaciones, temperatura, humedad relativa, velocidad del viento, albedo y radiación solar) para 2100 en tres escenarios diferentes de cambio climático, y (2) los fenómenos de sequía extrema. Se alcanzaron los objetivos de rendimiento para todos los escenarios de cambio climático probados, lo que indica que el diseño del CCBE de Lorena es robusto con respecto al cambio climático y las sequías extremas. En términos más generales, este estudio ilustra cómo pueden utilizarse las simulaciones numéricas para cuantificar la influencia del cambio climático en la capacidad a largo plazo de los CCBEs para controlar la generación de AMD.

摘要

由于气候变化,北纬50度以南的Québec(加拿大)年降水量、气温以及干旱事件的频率和持续时间预计会增加。 氧屏障对气候变化很敏感,如用于控制酸性矿山废水(AMD)的毛细阻滞式覆盖层(CCBE)。降水的增加可能对保持保湿层(MRL)的饱和具有正面的影响,这对于减少对活性尾矿的氧气通量是必要的;然而,干旱事件可能导致保湿层(MRL)暂时失饱和,从而增加产酸的可能性。Québec西部的Lorraine矿区于1999年用毛细阻滞式覆盖层(CCBE)进行了填海,并被用作评估气候变化对开垦效果影响的案例研究。利用三年的气象和水文地质资料,建立了二维数值模型,并对其进行了验证。对毛细阻滞式覆盖层(CCBE)的性能进行了数值模拟,考虑到了以下因素的影响:(1)在2100年之前三种不同气候变化情景下的气候条件(即降水、温度、相对湿度、风速、反照率和太阳辐射);(2)极端干旱事件。所有测试的气候变化情景都达到了性能指标,从而表明Lorraine毛细阻滞式覆盖层设计在应对气候变化和极端干旱方面是可靠的。更广泛地说,这项研究说明了如何使用数值模拟来量化气候变化对毛细阻滞式覆盖层控制产生酸性矿井废水的长期性能的影响。

Resumo

Um aumento das precipitações anuais, da temperatura e da frequência e duração dos eventos de seca são esperados em Québec (Canadá) ao sul do paralelo 50, como resultado das mudanças climáticas. As barreiras de oxigênio, tais como coberturas com efeitos de barreira capilar (CEBC), as quais são usadas para controlar drenagem ácida de mina (DAM), são sensíveis às mudanças climáticas. O aumento da precipitação pode ter efeitos positivos na manutenção da saturação da camada detentora de umidade (CDU), necessária para reduzir fluxos de oxigênio nos rejeitos reativos. Por outro lado, eventos de seca podem causar insaturação temporária na CDU e, consequentemente gerarem um aumento do potencial de geração ácida. A mina Lorraine, no oeste de Québec, foi recuperada com uma CEBC em 1999, e foi usado como estudo de caso para analisar os efeitos das mudanças climáticas na eficiência da recuperação. Um modelo numérico bidimensional foi desenvolvido e validado utilizando dados meteorológicos e hidrogeológicos de um período de 3 anos. Simulações numéricas foram realizadas para reconhecer o desempenho da CEBC, considerando a influência: (1) das condições climáticas (precipitação, temperatura, umidade relativa, velocidade do vento, albedo e radiação solar) até 2100 para três diferentes cenários de mudança climática, e (2) eventos de seca extrema. Os objetivos de performance foram alcançado para todos os cenários de mudança climática testados, indicando que o projeto da CEBC Lorraine se apresenta consistente frente às mudanças climáticas e secas intensas. E de maneira mais ampla, este estudo ilustra como uma simulação numérica poderia ser utilizada para quantificar a influência das mudanças climáticas no desempenho das CEBC no controle de DAM durante longos períodos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aachib M (1997) Étude en laboratoire de la performance de barrières de recouvrement constituées de rejets miniers pour limiter le DMA [Laboratory study of the performance of recovery barriers made up of mining discharges to limit AMD]. PhD Thesis, Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, QC, Canada

  • Alam MS, Barbour SL, Elshorbagy A, Huang M (2018) The impact of climate change on the water balance of oil sands reclamation covers and natural soil profiles. J Hydrometeorol 19(11):1731–1752. https://doi.org/10.1175/JHM-D-17-0230.1

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent DB, Stephenson B, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(D5). https://doi.org/10.1029/2005JD006290

  • Akindunni FF, Gillham RW, Nicholson RV (1991) Numerical simulations to investigate moisture-retention characteristics in the design of oxygen-limiting covers for reactive mine tailings. Can Geotech J 28:446–451. https://doi.org/10.1139/t91-054

    Article  Google Scholar 

  • ASTM Standard D2487 (2007) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM, West Conshohocken, PA

  • ASTM (2008) Standard guide for calibrating a groundwater flow model application D5981–9. American Society of Testing Materials, West Conshohocken, PA, 6 pp

  • Aubertin M (1996) Recouvrement multicouche pour le parc à résidus du site minier Lorraine [Multilayered cover for the tailings storage facility of the Lorraine mine site}. Report submitted to MRNQ (SDM-R-96-23), MRNQ, Quebec City, 30 pp

  • Aubertin M, Chapuis R, Aachib M, Bussière B, Ricard J, Tremblay L (1995) Évaluation en laboratoire de barrières sèches construites à partir de résidus miniers [Laboratory evaluation of dry covers constructed from mine tailings]. NEDEM/MEND Projet 2.22.2a, École Polytechnique de Montréal, QC, Canada, 199 pp. http://www.mend-nedem.org. Accessed December 2018

  • Aubertin M, Bussière B, Aachib M, Chapuis RP, Crespo JR (1996) Une modélisation numérique des écoulements non saturés dans des couvertures multicouches en sols [Numerical modelling of unsaturated flow in multilayer soil covers]. Hydrogéologie 1:3–13

    Google Scholar 

  • Aubertin M, Ricard JF, Chapuis RP (1998) A predictive model for the water retention curve: application to tailings from hard-rock mines. Can Geotech J 35(1):55–69. https://doi.org/10.1139/t97-080

    Article  Google Scholar 

  • Aubertin M, Bussière B, Monzon M, Joanes AM, Gagnon D, Barbera J. M, Aachib M, Bédard C, Chapuis RP, Bernier L (1999) Étude sur les barrières sèches construites à partir des résidus miniers. Phase II, Essais en place [A study of dry covers constructed from mine tailings, Phase II: in-situ test]. Mine Environment Neutral Drainage report (NEDEM/MEND) 2.22.2c. CANMET, Ottawa, 395 pp

  • Aubertin M, Bussière B, Bernier L (2002) Environnement et gestion des résidus miniers [Environment and mine wastes management]. Les Presses Internationales Polytechnique de Montréal, QC, Canada, CD-ROM

  • Aubertin M, Cifuentes E, Apithy S, Bussière B, Molson J, Chapuis RP (2009) Analyses of water diversion along inclined covers with capillary barrier effects. Can Geotech J 46(10):1146–1164. https://doi.org/10.1139/T09-050

    Article  Google Scholar 

  • Aubertin M, Bussière B, Pabst T, James M, Mbonimpa M (2016) Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites. Geo-Chicago 2016, pp 343–358. https://doi.org/10.1061/9780784480137.034

  • Bear J, Verruijt A (1987) Modeling Groundwater Pollution. In Modeling Groundwater Flow and Pollution (pp. 153–195). Springer, Dordrecht.https://doi.org/10.1007/978-94-009-3379-8_6

  • Bernier L (1996) Rapport d’analyses minéralogiques sur 7 échantillons de résidus miniers, Mine Lorraine, Témiscamingue, Québec [Report of mineralogical analsis on 7 samples of minings tailings, Lorraine Mine, Témiscamingue, Quebec]. Géoberex Recherche, Ile Perrot, QC, Canada, 14 pp

  • Bresson É, Demers I, Roy P, Pabst T, Chavaillaz Y (2018) Efficiency of reclamation methods under climate change: definition of a drought index. 18th International Conference on Tailings and Mine Waste, Keystone, CO, 30 September–2 October 2018

  • Broda S, Aubertin M, Blessent D, Maqsoud A, Bussière B (2014) Simulating the variation of the phreatic surface level to assess reclamation techniques for an acidic tailings impoundment: a fieldscale study. GeoRegina 2014: 67th CGS conference, Regina, SK, October 2014, 7 pp

  • Bussière B, Aubertin M, Julien M (2001) Couvertures avec effets de barrière capillaire pour limiter le drainage minier acide, aspects théoriques et pratiques [Covers with capillary barrier effects to limit acid mine drainage, theoretical and practical aspects]. Vecteur Environ 34(3):37–50

    Google Scholar 

  • Bussière B, Aubertin M, Chapuis RP (2003) The behavior of inclined covers used as oxygen barriers. Can Geotech J 40(3):512–535. https://doi.org/10.1139/T03-001

    Article  Google Scholar 

  • Bussière B, Benzaazoua M, Aubertin M, Mbonimpa M (2004) A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage. Environ Geol 45(5):609–622. https://doi.org/10.1007/s00254-003-0919-6

    Article  Google Scholar 

  • Bussière B, Maqsoud A, Aubertin M, Matschuk J, Mcmullen J, Julien M (2006) Performance of the oxygen limiting cover at the LTA site, Malartic, Québec. CIM Bull 1(6):1–11

    Google Scholar 

  • Bussière B, Aubertin M, Mbonimpa M, Molson R, Chapuis R (2007) Field experimental cells to evaluate the hydrogeological behavior of oxygen barriers made of silty materials. Can Geotech J 44(3):245. https://doi.org/10.1139/T06-120

    Article  Google Scholar 

  • Bussière B, Potvin R, Dagenais AM, Aubertin M, Maqsoud A, Cyr J (2009) Restauration du site minier Lorraine, Latulipe, Québec: résultats de 10 ans de suivi [Reclamation of the Lorraine mine site, Latulipe, Quebec: results of 10 years of monitoring]. Déchets Sci Et Tech 54:49–64

    Google Scholar 

  • Bussière B, Demers I, Charron P, Bossé B, Roy P, Jébrak M, Trépanier S (2017) Analyse de risque et de vulnérabilité liés aux changements climatiques pour le secteur minier québécois [Climate change risk and vulnerability analysis for the mining sector in Quebec]. Report submitted to MERN, Quebec City, 106 pp

  • Dagenais AM (2005) Techniques de contrôle du drainage minier acide basées sur les effets capillaires [Techniques to control acid mine drainage based on capillary barrier effects]. PhD Thesis, École Polytechnique de Montréal, QC, Canada, 394 pp

  • Dagenais AM, Aubertin M, Bussière B, Bernier L, Cyr J (2001) Monitoring at the Lorraine mine site: a follow up on the remediation plan. Paper presented at the 2001 National Association of Abandoned Mine Land Programs annual conference: Land Reborn—Tolls for the 21st Century, Athens, OH, August 2001 CD-Rom

  • Dagenais AM, Aubertin M, Bussière B, Cyr J (2005) Performance of the Lorraine mine site cover to limit oxygen migration. Proceedings of the SME Annual Meeting, Salt Lake City, UT, February 28–March 2, 2005

  • Desjarlais C, Allard M, Bélanger D, Blondlot A, Bouffard A, Bourque A, Chaumont D, Gosselin P, Houle D, Larrivée C, Lease N, Pham AT, Roy R, Savard JP, Turcotte R, Villeneuve C (2010) Savoir s’adapter aux changements climatiques [How to adapt to climate change]. Ouranos, Montréal, QC, Canada, 128 pp

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec S, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dynam 40(9–10):2123–2165. https://doi.org/10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PC, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate–carbon earth system models, part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PC, Phillipps PJ, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate–carbon earth system models, part II: carbon system formulation and baseline simulation characteristics. J Clim 26:2247–2267. https://doi.org/10.1175/JCLI-D-12-00150.1

    Article  Google Scholar 

  • Entraco Inc (1996) Conception d’un programme de restauration du site minier Lorraine [Design of a Lorraine mine site reclamation program]. Final report, Entraco, Santa Clarita, CA, 70 pp

  • Ethier MP, Bussière B, Broda S, Aubertin M (2018) Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada. Hydrogeol J 26(4):1201–1219. https://doi.org/10.1007/s10040-017-1713-y

    Article  Google Scholar 

  • Fabre C (2008) Remise à jour de l’instrumentation d’un site minier réhabilité: Site Lorraine, Latulipe, Québec [Instrumentation update of a reclamed mine site: Lorraine, Latulipe, Quebec]. Rapport de stage, Ecole Nationale Supérieure de Géologie de Nancy, France

  • Ford J, Pearce T, Prno J, Duerden F, Ford LB, Beaumier M, Smith T (2010) Perceptions of climate change risks in primary resource use industries: a survey of the Canadian mining sector. Reg Environ Change 10(1):65–81. https://doi.org/10.1007/s10113-009-0094-8

    Article  Google Scholar 

  • Geo-Slope International Ltd (2015) Seepage modelling with SEEP/W, an engineering methodology. Geo-Slope, Calgary, AB, Canada

  • Geo-Slope International Ltd (2017) Heat and mass transfer modeling with GeoStudio 2018. Geo-Slope, Calgary, AB, Canada

  • Guay C, Minville M, Braun M (2015) A global portrait of hydrological changes at the 2050 horizon for the province of Québec. Can Water Resour J 40(3):285–302. https://doi.org/10.1080/07011784.2015.1043583

    Article  Google Scholar 

  • Hennessy KJ, Suppiah R, Page CM (1999) Australian rainfall changes, 1910–1995. Aust Meteorol Mag 48(1):1–13

    Google Scholar 

  • Hilhorst MA, Dirksen C (1994) Dielectric water content sensors: time domain versus frequency domain. In: Time domain reflectometry in environmental, infrastructure, and mining applications. US Dept. Interior Bureau of Mines, Northwestern Univ., Evanston, IL, pp 23-33

  • Hotton G (2019) Influence des changements climatiques Sur la performance de couverture à effets de barrière capillaire: étude du cas Lorraine [Influence of climate change on the performance of cover with capillary barrier effects: case study of the Lorraine mine site]. MSc Thesis, Université du Québec en Abitibi-Témiscamingue, QC, Canada

  • Intergovernmental Panel on Climate Change (IPCC) (2007) General uidelines on the use of scenario data for climate impact and adaptation assessment, version 2. Prepared by T.R. Carter on behalf of the Intergovernmental Panel on Climate Change, Task Group on Data and Scenario Support for Impact and Climate Assessment, Geneva, 66 pp

  • Intergovernmental Panel on Climate Change (IPCC) (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 1535 pp. https://doi.org/10.1017/CBO9781107415324

    Chapter  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014a) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability, part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 1132 pp. https://doi.org/10.1017/CBO9781107415379

    Chapter  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2014b) In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability, part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 688 pp. https://doi.org/10.1017/CBO9781107415386

    Chapter  Google Scholar 

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products, chap 3. In: Blowes DW, Jambor JL (eds) Short course handbook on environmental geochemistry of sulfide mine-wastes. Mineralogical Association of Canada, Quebec City, QC

  • Jolette D (2001) Travaux effectués au site minier Lorraine. Rapport de travaux de terrain [Works done at the Lorraine mine site: fieldwork report]. Chaire Industrielle CRSNG-Polytechnique-UQAT, Rouyn-Noranda, QC, 13 pp

  • Kovacs G (1981) Seepage hydraulics: developments in water science, chap 3:2. Elsevier, Amsterdam

  • Kalonji-Kabambi A, Bussière B, Demers I (2017) Hydrogeological behavior of covers with capillary barrier effects made of mining materials. Geotech Geol Eng 35(3):1199–1220. https://doi.org/10.1007/s10706-017-0174-3

    Article  Google Scholar 

  • Lavergne C (1985) Gîtes minéraux à tonnage évalué et production minérale du Québec [Mineral deposits with estimated tonnage and Quebec mineral production]. DV 85-08, Ministère de l’Énergie et des Ressources, Quebec City, 76 pp

  • Maqsoud A, Bussière B (2008) Mise à jour de l’instrumentation du site Lorraine [Instrumentation update of the Lorraine mine site]. Report of URSTM submitted to MRNF, Quebec City, 12 pp

  • Maqsoud A, Bussière B, Aubertin M, Cyr J (2012) Transient hydrogeological behavior of the Lorraine CCBE (Québec, Canada). GESRIM 2012: International Congress on the Management of the Mining Wastes and Closed Mines, Marrakesh, Morocco, 3–6 April 2012

  • Mine Environment Neutral Drainage Program (MEND) (2001) Manual report 5.4.2, vols 1–6. CANMET, Ottawa

  • Mine Environment Neutral Drainage Program (MEND) (2011) Climate Change and Acid Rock Drainage –Risks for the Canadian Mining Sector. Mining Association of Canada MEND Report 1.61.7, Mine Environment Neutral Drainage (MEND), Quebec City

  • Monteith JL (1981) Evaporation and surface temperature. QJR Meteorol Soc 107:1–27. https://doi.org/10.1002/qj.49710745102

    Article  Google Scholar 

  • Morel-Seytoux HJ (1992) L’effet de barrière capillaire à l’interface de deux couches de sol aux propriétés fort contrastées [Capillary barrier effect at the interface of two layers of soil with high contrast of properties]. Hydrol Cont 7:117–128

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi, Smith SJ, Stouffer RJ, Thomson AM, Weynant JP, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. https://doi.org/10.1038/nature08823

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. https://doi.org/10.1029/WR012i003p00513

    Article  Google Scholar 

  • Musy A (2005) Cours Hydrologie générale, chapitre 4: evaporation et interception [General hydrology course, chap 4: evaporation and interception]. Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire d’écohydrologie ECHO. http://echo2.epfl.ch/e-drologie/chapitres/chapitre4/chapitre4.html. Accessed February 2019

  • Nastev M, Aubertin M (2000) Hydrogeological modelling for the reclamation work at the Lorraine mine site Québec. 53rd Canadian Geotechnical Conference and 1st joint IAHCNC and CGS Groundwater Specialty Conference, Montreal, QC, Canada, pp 311–318

  • Natural Resources Canada (NRCan) (2008) From impacts to adaptation: Canada in a changing climate 2007. Government of Canada, Ottawa, ON

    Google Scholar 

  • Nicholson RV, Gillham RWM, Cherry JA, Reardon EJ (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Can Geotech J 26:1–8. https://doi.org/10.1139/t89-001

    Article  Google Scholar 

  • Nordstrom DK (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. Int Geol Rev 42:499–515. https://doi.org/10.1080/00206810009465095

    Article  Google Scholar 

  • Nyameogo GFT, Mbonimpa M, Bussière B, Awoh AS (2018) Influence of frozen conditions on the oxygen diffusion coefficient in unsaturated porous materials. Acta Geotech. :https://doi.org/10.1007/s11440-018-0690-1

  • O’Kane M, Wilson GW, Barbour L (1998) Instrumentation and monitoring of a engineered soil cover system for mine waste rock. Can Geotech J 35:828–845. https://doi.org/10.1139/t98-051

    Article  Google Scholar 

  • Pabst T (2011) Étude expérimentale et numérique du comportement hydro- géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés [Experimental and numerical study of the hydro-geochemical behaviour of covers placed on partly oxidized sulphidic tailings]. PhD Thesis, École Polytechnique de Montréal, QC, Canada

  • Pabst T, Aubertin M, Bussière B, Molson J (2017) Experimental and numerical evaluation of single-layer covers placed on acid-generating tailings. Geotech Geol Eng 35(4):1421–1438. https://doi.org/10.1007/s10706-017-0185-0

    Article  Google Scholar 

  • Pabst T, Bussière B, Aubertin M, Molson J (2018) Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: a numerical hydro-geochemical assessment. J Contam Hydrol 214:39–53. https://doi.org/10.1016/j.jconhyd.2018.05.006

    Article  Google Scholar 

  • Pearce T, Ford JD, Prno J, Duerden F (2009) Climate change and Canadian mining: opportunities for adaptation. Report prepared for the David Suzuki Foundation, Vancouver, pp 1–50

  • Pearce TD, Ford JD, Prno J, Duerden F, Pittman J, Beaumier M, Smit B (2010) Climate change and mining in Canada. Mitigation Adapt Strat Global Change 16(3):347–368. https://doi.org/10.1007/s11027-010-9269-3

    Article  Google Scholar 

  • Potvin, R (2009) Évaluation à différentes échelles de la performance de systèmes de traitement passif pour des effluents fortement contaminés par le drainage minier acide [Evaluation at various scales of the performance of passive treatment systems for effluents heavily contaminated by acid mine drainage}. PhD Thesis, Université du Québec en Abitibi-Témiscamingue, QC, Canada

  • Ricard JF, Aubertin M, Firlotte FW, Knapp R, McMullen J (1997) Design and construction of a dry cover made of tailings for the closure of les terrains Aurifères site, Malartic, QC. 4th ICARD, Vancouver, May 31–June 6, 1997, pp 1515–1530

  • Robinson M, Dean TJ (1993) Measurement of near surface soil water content using a capacitance probe. Hydrol Process 7(1):77–86. https://doi.org/10.1002/hyp.3360070108

    Article  Google Scholar 

  • Smirnova E, Bussière B, Tremblay F, Bergeron Y (2011) Vegetation succession and impacts of biointrusion on covers used to limit acid mine drainage. J Environ Qual 40(1):133–143. https://doi.org/10.2134/jeq2010.0051

    Article  Google Scholar 

  • SRK (Steffen Robertson and Kirsten) (1989) Draft acid rock technical guide. BC AMD Task Force, SRK, Vancouver

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Climatic Change 79(3–4):185–211. https://doi.org/10.1007/s10584-006-9051-4

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Vardon PJ (2015) Climatic influence on geotechnical infrastructure: a review. Environ Geotech 2(3):166–174. https://doi.org/10.1680/envgeo.13.00055

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718. https://doi.org/10.1175/2009JCLI2909.1

    Article  Google Scholar 

  • Vick SG (1983) Planning, design and analysis of tailings. Wiley, Chichester, UK

    Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845. https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • White I, Zegelin S J, Wilson LG (1995) Electric and dielectric methods for monitoring soil-water content. In: Handbook of vadose zone characterization and monitoring. CRC, Boca Raton, FL, pp 343–385

  • Wilson GW (1990) Soil evaporative fluxes for geotechnical engineering problems. PhD Thesis, University of Saskatchewan, Saskatoon, SK, Canada

  • Wilson GW, Fredlund DG, Barbour SL (1994) Coupled soil-atmosphere modelling for soil evaporation. Can Geotechn J 31(2):151–161. https://doi.org/10.1139/t94-021

    Article  Google Scholar 

  • Yanful EK (1993) Oxygen diffusion through soil covers on sulphidic mine tailings. J Geotech Eng-ASCE 119(8):1207–1228. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:8(1207)

    Article  Google Scholar 

  • Yanful EK, Simms PH, Payant SC (1999) Soil covers for controlling acid generation in mine tailing, a laboratory evaluation of the physics and geochemistry. Water Air Soil Pol 114:347–375. https://doi.org/10.1023/A:1005187613503

    Article  Google Scholar 

  • Yanful EK, Mousavi SM, De Souza LP (2006) A numerical study of soil cover performance. J Environ Manage 81(1):72–92. https://doi.org/10.1016/j.jenvman.2005.10.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank also the Ministry of Energy and Natural Resources of Quebec (MERN), and Ouranos Inc. for their support. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making their model output available. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led the development of software infrastructure for CMIP in partnership with the Global Organization for Earth System Science Portals. Gary Schudel is warmly thanked for helping to improve the manuscript.

Funding

This work was funded by the Fonds de recherche du Québec – Nature et Technologies (FRQNT) and the Research Institute on Mines and the Environment (RIME) UQAT-Polytechnique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bussière.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotton, G., Bussière, B., Pabst, T. et al. Influence of climate change on the ability of a cover with capillary barrier effects to control acid generation. Hydrogeol J 28, 763–779 (2020). https://doi.org/10.1007/s10040-019-02084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02084-y

Keywords

Navigation