Skip to main content

Advertisement

Log in

Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 26 November 2019

This article has been updated

Abstract

Cynara scolymus leaves were used in the green synthesis of zinc oxide nanoparticles (ZnO NPs). ZnO NPs was confirmed by the formation of a white precipitate. UV–visible spectroscopy results showed a strong absorbance peak at 371 nm. The use of SEM confirmed the spherical shape of the nanoparticles, which had an average size of 65.9 nm. The nanoparticle zinc (80.17%) and oxygen (19.83%) composition was confirmed using energy-dispersive X-ray analysis (EDXA). X-ray power diffraction (XRD) spectra confirmed the crystalline nature of the nanoparticles. We found 0.5% hemolysis following the addition of 100 μg/ml of ZnO NPs. A MIC study found that bacteria were more susceptible to ZnO NPs relative to fungi. The ZnO NPs photocatalytic degradation activity was assessed using methyl violet and malachite green, which exhibited 94.3% degradation after 120 min of UV exposure and 89.5% degradation after 120 min of UV exposure, respectively. Using human breast cancer cell line (MCF 7) and Vero cells, we found half maximal IC50 values of 65.31 μg/μl and 957.85 μg/μl, respectively, following antiproliferative assays. Thus, green synthesized ZnO NPs were found to possess hemolytic, antimicrobial, photocatalytic, and antiproliferative activities, and as such could be used in the development of novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 26 November 2019

    The original version of this article unfortunately contained a mistake in acknowledgement section. The corrected acknowledgement is published with this erratum article.

References

  1. J. Santhoshkumar, S. V. Kumar, and S. Rajeshkumar (2017). Resour. Eff. Technol.3, 459–465.

    Google Scholar 

  2. M. Divya, B. Vaseeharan, M. Abinaya, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. B.178, 211–218.

    Article  CAS  PubMed  Google Scholar 

  3. G. Bhumi and N. Savithramma (2014). Int. J. Drug. Dev. Res.6, 208–214.

    Google Scholar 

  4. P. Ramesh, A. Rajendran, and M. Meenakshisundaram (2014). J. Nanosci. Nanotechnol.2, 41–45.

    Google Scholar 

  5. V. Karthika, A. Arumugam, K. Gopinath, P. Kaleeswarran, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B.167, 189–199.

    Article  CAS  PubMed  Google Scholar 

  6. G. Benelli, F. Maggi, R. Pavela, K. Murugan, M. Govindarajan, B. Vaseeharan, R. Petrelli, L. Cappellacci, S. Kumar, A. Hofer, M. R. Youssefi, A. A. Alarfaj, J. S. Hwang, and A. Higuchi (2018). Environ. Sci. Pollut. Res.25, 10184–10206.

    Article  CAS  Google Scholar 

  7. P. C. Nagajyothi, T. V. Sreekanth, C. O. Tettey, Y. I. Jun, and S. H. Mook (2014). Bioorg. Med. Chem. Lett.24, 4298–4303.

    Article  CAS  PubMed  Google Scholar 

  8. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, and M. Shobiya (2016). Biomed. Pharmacother.84, 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  9. R. Ishwarya, B. Vaseeharan, S. Kalyani, B. Banumathi, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, M. N. Al-anbr, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol.178, 249–258.

    Article  CAS  Google Scholar 

  10. T. Singh, K. Jyoti, A. Patnaik, A. Singh, R. Chauhan, and S. S. Chandel (2017). Genet. Eng. Biotechnol. J.15, 31–39.

    Article  Google Scholar 

  11. B. Banumathi, B. Vaseeharan, R. Ishwarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Parasitol. Res.116, 1637–1651.

    Article  PubMed  Google Scholar 

  12. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall (2003). Appl. Phys. Lett.83, 4719–4721.

    Article  CAS  Google Scholar 

  13. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Sriram, and P. K. Praseetha (2018). Mat. Sci. Semicon. Proc.82, 39–45.

    Article  CAS  Google Scholar 

  14. B. Kumar, K. Smita, L. Cumbal, and A. Debut (2014). Bioinorg. Chem. Appl.523869, 1–7.

    Google Scholar 

  15. P. Jamdagni, P. Khatri, and J. S. Rana (2018). JKSUS.30, 168–175.

    Google Scholar 

  16. J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol.162, 395–401.

    Article  CAS  Google Scholar 

  17. R. Atchudan, T. N. Edison, S. Perumal, D. Karthikeyan, and Y. R. Lee (2016). J. Photochem. Photobiol.162, 500–510.

    Article  CAS  Google Scholar 

  18. R. Atchudan, T. N. Edison, S. Perumal, N. Karthik, D. Karthikeyan, M. Shanmugam, and Y. R. Lee (2018). J. Photochem. Photobiol. A Chem.350, 75–85.

    Article  CAS  Google Scholar 

  19. N. Muthuchamy, R. Atchudan, T. N. Edison, S. Perumal, and Y. R. Lee (2018). J. Electroanal. Chem.816, 195–204.

    Article  CAS  Google Scholar 

  20. R. Atchudan, T. N. Edison, S. Perumal, M. Shanmugam, and Y. R. Lee (2017). J. Photochem. Photobiol. A Chem.337, 100–111.

    Article  CAS  Google Scholar 

  21. O. Erdogan, M. Abbak, G. M. Demirbolat, F. Birtekocak, M. Aksel, S. Pasa, and O. Cevik (2019). PloS one.14, (6), e0216496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. X. Zhu, H. Zhang, and R. Lo (2004). J. Agric. Food Chem.52, (24), 7272–7278.

    Article  CAS  PubMed  Google Scholar 

  23. M. A. Farag, S. H. El-Ahmady, F. S. Elian, and L. A. Wessjohann (2013). Phytochemistry.95, 177–187.

    Article  CAS  PubMed  Google Scholar 

  24. N. Tsevegsuren, G. Davaakhuu, and T. Udval (2014). Mong. J. Chem.15, 40–42.

    Article  Google Scholar 

  25. R. Nateghi, F. Samadi, F. Ganji, and S. Zerehdaran (2013). Int J Agric Sci.3, (9), 678–688.

    Google Scholar 

  26. B. Malaikozhundan, B. Vaseeharan, S. Vijayakumar, K. Pandiselvi, M. A. Kalanjiam, K. Murugan, and G. Benelli (2017). Microb. Pathog.104, 268–277.

    Article  CAS  PubMed  Google Scholar 

  27. D. Das, B. C. Nath, P. Phukon, and S. K. Dolui (2013). Colloids Surf. B.111, 556–560.

    Article  CAS  Google Scholar 

  28. A. Yildirim, E. Ozgur, and M. Bayindir (2013). J. Mater. Chem. B.1, 1909–1920.

    Article  CAS  PubMed  Google Scholar 

  29. T. Muthukumarasamyvel, R. Baskar, S. Chandirasekar, K. Umamaheswari, and N. Rajendiran (2016). ACS Appl. Mater. Interfaces.8, 25111–25126.

    Article  CAS  PubMed  Google Scholar 

  30. B. Raju, A. Muniyasamy, S. G. Prakash, A. S. Sundararaj, and U. Kesavachandran (2017). J. Clust. Sci.28, 1739–1748.

    Article  CAS  Google Scholar 

  31. S. D. Sarker, L. Nahar, and Y. Kumarasamy (2007). Methods.42, 321–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Raja, S. Ashokkumar, R. P. Marthandam, J. Jayachandiran, C. P. Khatiwada, K. Kaviyarasu, R. G. Raman, and M. Swaminathan (2018). J. Photochem. Photobiol.1, (181), 53–58.

    Article  CAS  Google Scholar 

  33. L. Fu and Z. Fu (2015). Ceram. Int.41, 2492–2496.

    Article  CAS  Google Scholar 

  34. D. Mahendiran, G. Subash, D. A. Selvan, D. Rehana, R. S. Kumar, and A. K. Rahiman (2017). BioNanoScience.7, 530–545.

    Article  Google Scholar 

  35. R. Balaji (2016). PhD Thesis, University of Madras, Chennai, India.

  36. D. Gnanasangeetha and D. SaralaThambavani (2013). Res. J. Mater. Sci.2320, 6055.

    Google Scholar 

  37. S. Karthik, P. Siva, K. S. Balu, R. Suriyaprabha, V. Rajendran, and M. Maaza (2017). Adv. Powder Technol.28, 3184–3194.

    Article  CAS  Google Scholar 

  38. D. Suresh, P. C. Nethravathi, H. Rajanaika, H. Nagabhushana, and S. C. Sharma (2015). Mater. Sci. Semicond. Process.31, 446–454.

    Article  CAS  Google Scholar 

  39. N. A. Al-Shabib, F. M. Husain, I. Hassan, M. S. Khan, F. Ahmed, F. A. Qais, M. Oves, M. Rahman, R. A. Khan, A. Khan, and A. Hussain (2018). J Nanomater.2018, 14.

    Google Scholar 

  40. S. Vennila, S.S. Jesurani (2017). Int. J. Chemtech. Res.10, 271–275

    CAS  Google Scholar 

  41. A. Datta, C. Patra, H. Bharadwaj, S. Kaur, N. Dimri, and R. Khajuria (2017). J Biotechnol Biomater.7, 271–275.

    Article  Google Scholar 

  42. H. Padalia and S. Chanda (2017). Artif. Cells Nanomed. Biotechnol.45, (8), 1751–1761.

    Article  CAS  PubMed  Google Scholar 

  43. B. N. Patil and T. C. Taranath (2016). Int J Mycobact.5, (2), 197–204.

    Article  Google Scholar 

  44. V. Vinotha, A. Iswarya, R. Thaya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, M. N. Al-Anbr, and B. Vaseeharan (2019). J Photochem Photobiol.25, 111541.

    Article  CAS  Google Scholar 

  45. M. Abinaya, B. Vaseeharan, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Trace Elem. Med. Biol.45, 93–103.

    Article  CAS  PubMed  Google Scholar 

  46. T. Karnan and S. A. Selvakumar (2016). J. Mol. Struct.1125, 358–365.

    Article  CAS  Google Scholar 

  47. Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, J. Yang, and F. Peng (2015). Green Chem. Lett. Rev.8, 59–63.

    Article  CAS  Google Scholar 

  48. N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, and M. Vimalan (2017). New J. Chem.41, 10347–10356.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Principal and the Management of Stella Maris College (Autonomous) Chennai for allowing them to use their research facilities. The second author thanks University Grants Commission Major Research Project (UGC MRP) (No. F.MRP-6994/16 (SERO/UGC) for financial support. SAIF IITM, Chennai and the CLRI-CATERS-CSIR-Central Leather Research Institute, Chennai are also acknowledged for allowing the authors to use their scanning electron microscopy (SEM) and FT-IR analysis facilities, respectively. The authors extend their appreciation to the Research Supporting Project number RSP-2019/70, King Saud University, Riyadh, Saudi Arabia. The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sundararaj Aruna Sharmili or Baskaralingam Vaseeharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapriya, M., Sharmili, S.A., Baskar, R. et al. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity. J Clust Sci 31, 791–801 (2020). https://doi.org/10.1007/s10876-019-01686-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01686-6

Keywords

Navigation