Skip to main content

Advertisement

Log in

Influence of Water Temperature Anomalies on the Growth of Zostera marina Plants Held Under High and Low Irradiance Levels

  • Special Issue: Climate Change and Anthropogenic Change around Korean Peninsula
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Coastal water temperature anomalies are expected to intensify during the current period of global climate change. Sudden water temperature elevation (e.g., heat waves) or decrease (e.g., summer upwelling) can have a far-reaching influence on seagrasses in temperate regions. We examined the influence of anomalously elevated and decreased water temperatures on the growth of Zostera marina plants held under two different levels of irradiance. Core samples of wild Z. marina shoots were cultured under either suddenly elevated (from the in situ level of 20 to 27 °C during the fall experiment) or decreased (from the in situ level of 27 to 20 °C during the summer experiment) temperature. We included light as an experimental factor because the light requirements of seagrasses increase when plants are under thermal stress. The growth of Z. marina shoots under anomalously elevated water temperature conditions, which simulated marine heat waves, was significantly declined, whereas the plant growth under suddenly decreased water temperature conditions, which simulated summer upwelling events, was maintained or slightly increased. In the fall 2014 experimental period, Z. marina shoots under the suddenly elevated water temperature condition (27 °C) showed significant decreases in shoot density, biomass, and leaf productivity by ca. 40–80%, whereas plants held under the ambient water temperature condition (20 °C) maintained or slightly increased their growths. In the summer 2015 experimental period, Z. marina under the sudden temperature reduction conditions (20 °C) maintained relatively high shoot density and leaf productivity, whereas plants under the in situ high water temperature condition (27 °C) showed significantly reduced growths. The growth of Z. marina shoots, which were cultured in the optimal temperature condition (20 °C), was enhanced by increasing underwater irradiance. However, the adverse effects of high water temperature on Z. marina growth could not be reversed by increasing irradiance levels at the end of the experiments. According to the results of this study, the intensified sea surface water temperature anomalies induced by global climate change will alter the growth and distribution of temperate seagrasses and, consequently, the structure and function of the coastal seagrass ecosystems in the temperate region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn, Y.-H., P. Shanmugam, J.-H. Ryu, and J.-C. Jeong. 2006. Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae 5 (2): 213–231. https://doi.org/10.1016/j.hal.2005.07.007.

    Article  CAS  Google Scholar 

  • Arias-Ortiz, A., O. Serrano, P. Masqué, P.S. Lavery, U. Mueller, G.A. Kendrick, M. Rozaimi, A. Esteban, J.W. Fourqurean, and N. Marbà. 2018. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nature Climate Change 8 (4): 338–344.

    Article  CAS  Google Scholar 

  • Beca-Carretero, P., B. Olesen, N. Marbà, and D. Krause-Jensen. 2018. Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Marine Ecology Progress Series 589: 59–72.

    Article  CAS  Google Scholar 

  • Bergmann, N., G. Winters, G. Rauch, C. Eizaguirre, J. Gu, P. Nelle, B. Fricke, and T.B. Reusch. 2010. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Molecular Ecology 19 (14): 2870–2883.

    Article  Google Scholar 

  • Bulthuis, D.A. 1987. Effects of temperature on photosynthesis and growth of seagrasses. Aquatic Botany 27 (1): 27–40.

    Article  Google Scholar 

  • Collier, C.J., S. Uthicke, and M. Waycott. 2011. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef. Limnology and Oceanography 56 (6): 2200–2210.

    Article  CAS  Google Scholar 

  • Curiel, D., A. Bellato, A. Rismondo, and M. Marzocchi. 1996. Spatial and temporal variation of benthic marine algae at the Cabo Frio upwelling region, Rio de Janeiro, Brazil. Aquatic Botany 52 (4): 283–299.

    Article  Google Scholar 

  • Duarte, C.M., and C.L. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65 (1): 159–174.

    Article  Google Scholar 

  • Eriander, L. 2017. Light requirements for successful restoration of eelgrass (Zostera marina L.) in a high latitude environment—acclimatization, growth and carbohydrate storage. Journal of Experimental Marine Biology and Ecology 496: 37–48.

    Article  CAS  Google Scholar 

  • Ewers, C.J. 2013. Assessing physiological thresholds for Eelgrass (Zostera marina L.) survival in the face of climate change. San Luis Obispo: California Polytechnic State University.

    Book  Google Scholar 

  • Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M.A. Mateo, E.T. Apostolaki, G.A. Kendrick, D. Krause-Jensen, and K.J. McGlathery. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5 (7): 505–509.

    Article  CAS  Google Scholar 

  • Franssen, S.U., J. Gu, G. Winters, A.-K. Huylmans, I. Wienpahl, M. Sparwel, J.A. Coyer, J.L. Olsen, T.B.H. Reusch, and E. Bornberg-Bauer. 2014. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Marine Genomics 15: 65–73. https://doi.org/10.1016/j.margen.2014.03.004.

    Article  Google Scholar 

  • Fraser, M.W., G.A. Kendrick, J. Statton, R.K. Hovey, A. Zavala-Perez, and D.I. Walker. 2014. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. Journal of Ecology 102 (6): 1528–1536. https://doi.org/10.1111/1365-2745.12300.

    Article  Google Scholar 

  • Frölicher, T.L., and C. Laufkötter. 2018. Emerging risks from marine heat waves. Nature Communications 9 (1): 650. https://doi.org/10.1038/s41467-018-03163-6.

    Article  CAS  Google Scholar 

  • Grech, A., K. Chartrand-Miller, P. Erftemeijer, M. Fonseca, L. McKenzie, M. Rasheed, H. Taylor, and R. Coles. 2012. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environmental Research Letters 7 (2): 024006.

    Article  Google Scholar 

  • Green, E.P., and F.T. Short. 2003. World atlas of seagrasses. Berkeley: University of California Press.

    Google Scholar 

  • Herzka, S.Z., and K.H. Dunton. 1997. Seasonal photosynthetic patterns of the seagrass Thalassia testudinum in the western Gulf of Mexico. Marine Ecology Progress Series 152: 103–117.

    Article  Google Scholar 

  • Hessing-Lewis, M.L., and S.D. Hacker. 2013. Upwelling-influence, macroalgal blooms, and seagrass production; temporal trends from latitudinal and local scales in northeast Pacific estuaries. Limnology and Oceanography 58 (3): 1103–1112.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., and J.F. Bruno. 2010. The impact of climate change on the world’s marine ecosystems. Science 328 (5985): 1523–1528.

  • Hu, X., D.J. Burdige, and R.C. Zimmerman. 2012. δ13C is a signature of light availability and photosynthesis in seagrass. Limnology and Oceanography 57 (2): 441–448. https://doi.org/10.4319/lo.2012.57.2.0441.

    Article  CAS  Google Scholar 

  • Hyndes, G.A., J.K.L. Heck, A. Vergés, E.S. Harvey, G.A. Kendrick, P.S. Lavery, K. McMahon, et al. 2016. Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66 (11): 938–948. https://doi.org/10.1093/biosci/biw111.

    Article  Google Scholar 

  • Hyun, J.-H., D. Kim, C.-W. Shin, J.-H. Noh, E.-J. Yang, J.-S. Mok, S.-H. Kim, H.-C. Kim, and S. Yoo. 2009. Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung Basin, East Sea. Aquatic Microbial Ecology 54 (1): 45–54.

    Google Scholar 

  • IPCC. 2014. Climate change 2013: the physical science basis, Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jordà, G., N. Marbà, and C.M. Duarte. 2012. Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change 2 (11): 821–824.

    Article  Google Scholar 

  • Kentula, M.E., and C.D. McIntire. 1986. The autecology and production dynamics of eelgrass (Zostera marina L.) in Netarts Bay, Oregon. Estuaries 9 (3): 188–199.

    Article  Google Scholar 

  • Kim, A.-R., S.-H. Youn, M.-H. Chung, S.-C. Yoon, and C.-H. Moon. 2014. The influences of coastal upwelling on phytoplankton community in the southern part of East Sea, Korea. The Sea 19 (4): 287–301.

    Article  Google Scholar 

  • Kim, Y.K., S.H. Kim, and K.-S. Lee. 2015. Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuaries and Coasts 38 (2): 558–568.

    Article  CAS  Google Scholar 

  • Kim, J.-H., S.H. Kim, Y.K. Kim, J.-I. Park, and K.-S. Lee. 2016. Growth dynamics of the seagrass Zostera japonica at its upper and lower distributional limits in the intertidal zone. Estuarine, Coastal and Shelf Science 175: 1–9.

    Article  Google Scholar 

  • Lee, K.-S., and S.Y. Lee. 2003. The seagrasses of the Republic of Korea. In World atlas of seagrasses: present status and future conservation, ed. E.P. Green and F.T. Short, 193–198. Berkeley: University of California Press.

    Google Scholar 

  • Lee, J.C., and J.Y. Na. 1985. Structure of upwelling off the southeast coast of Korea. Journal of the Oceanological Society of Korea 20 (3): 6–19.

    Google Scholar 

  • Lee, K.-S., S.R. Park, and J.-B. Kim. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Marine Biology 147 (5): 1091–1108.

    Article  Google Scholar 

  • Lee, K.-S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350 (1): 144–175.

    Article  Google Scholar 

  • Lin, H.-J., C.-L. Lee, S.-E. Peng, M.-C. Hung, P.-J. Liu, and A.B. Mayfield. 2018. The effects of El Niño-Southern Oscillation events on intertidal seagrass beds over a long-term timescale. Global Change Biology 24 (10): 4566–4580. https://doi.org/10.1111/gcb.14404.

    Article  Google Scholar 

  • Marbà, N., and C.M. Duarte. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16 (8): 2366–2375.

    Article  Google Scholar 

  • Marsh, J.A., W.C. Dennison, and R.S. Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology 101 (3): 257–267.

    Article  Google Scholar 

  • McGlathery, K.J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. Journal of Phycology 37 (4): 453–456.

    Article  Google Scholar 

  • Moore, K.A., E.C. Shields, D.B. Parrish, and R.J. Orth. 2012. Eelgrass survival in two contrasting systems: role of turbidity and summer water temperatures. Marine Ecology Progress Series 448: 247–258.

    Article  Google Scholar 

  • Moore, K.A., E.C. Shields, and D.B. Parrish. 2014. Impacts of varying estuarine temperature and light conditions on Zostera marina (eelgrass) and its interactions with Ruppia maritima (widgeongrass). Estuaries and Coasts 37 (1): 20–30.

    Article  Google Scholar 

  • Moreno-Marín, F., F.G. Brun, and M.F. Pedersen. 2018. Additive response to multiple environmental stressors in the seagrass Zostera marina L. Limnology and Oceanography 63 (4): 1528–1544. https://doi.org/10.1002/lno.10789.

    Article  CAS  Google Scholar 

  • Nejrup, L.B., and M.F. Pedersen. 2008. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany 88 (3): 239–246.

    Article  Google Scholar 

  • Nowicki, R.J., J.A. Thomson, D.A. Burkholder, J.W. Fourqurean, and M.R. Heithaus. 2017. Predicting seagrass recovery times and their implications following an extreme climate event. Marine Ecology Progress Series 567: 79–93.

    Article  Google Scholar 

  • Oliver, E.C.J., M.G. Donat, M.T. Burrows, P.J. Moore, D.A. Smale, L.V. Alexander, J.A. Benthuysen, M. Feng, A. Sen Gupta, A.J. Hobday, N.J. Holbrook, S.E. Perkins-Kirkpatrick, H.A. Scannell, S.C. Straub, and T. Wernberg. 2018. Longer and more frequent marine heatwaves over the past century. Nature Communications 9 (1): 1324. https://doi.org/10.1038/s41467-018-03732-9.

    Article  CAS  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, and S. Olyarnik. 2006. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996.

    Article  Google Scholar 

  • Park, K.-A., and K.-R. Kim. 2010. Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations. Geophysical Research Letters 37 (9): L09603. https://doi.org/10.1029/2009GL042231.

    Article  Google Scholar 

  • Park, S.R., S. Kim, Y.K. Kim, C.-K. Kang, and K.-S. Lee. 2016. Photoacclimatory responses of Zostera marina in the intertidal and subtidal zones. PLoS One 11 (5): e0156214.

    Article  CAS  Google Scholar 

  • Ralph, P.J., and R. Gademann. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquatic Botany 82 (3): 222–237.

    Article  CAS  Google Scholar 

  • Reynolds, L.K., K. DuBois, J.M. Abbott, S.L. Williams, and J.J. Stachowicz. 2016. Response of a habitat-forming marine plant to a simulated warming event is delayed, genotype specific, and varies with phenology. PLoS One 11 (6): e0154532.

    Article  CAS  Google Scholar 

  • Salo, T., and M.F. Pedersen. 2014. Synergistic effects of altered salinity and temperature on estuarine eelgrass (Zostera marina) seedlings and clonal shoots. Journal of Experimental Marine Biology and Ecology 457: 143–150. https://doi.org/10.1016/j.jembe.2014.04.008.

    Article  CAS  Google Scholar 

  • Short, F.T., and C.M. Duarte. 2001. Methods for the measurement of seagrass growth and production. In Global seagrass research methods, ed. F.T. Short and R.G. Coles, 155–198. New York: Elsevier.

    Chapter  Google Scholar 

  • Short, F.T., and H.A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63 (3): 169–196.

    Article  Google Scholar 

  • Short, F.T., and C.A. Short. 1984. Seagrass filter: purification of estuarine and coastal waters. In The estuary as a filter, ed. V.S. Kennedy, 395–413. Orlando: Academic.

    Chapter  Google Scholar 

  • Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23 (1): 17–27.

  • Son, S.H., T. Platt, H. Bouman, D.K. Lee, and S. Sathyendranath. 2006. Satellite observation of chlorophyll and nutrients increase induced by Typhoon Megi in the Japan/East Sea. Geophysical Research Letters 33 (5): L05607. https://doi.org/10.1029/2005GL025065.

    Article  Google Scholar 

  • Staehr, P.A., and J. Borum. 2011. Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 407 (2): 139–146.

    Article  Google Scholar 

  • Thom, R.M., A.B. Borde, S. Rumrill, D.L. Woodruff, G.D. Williams, J.A. Southard, and S.L. Sargeant. 2003. Factors influencing spatial and annual variability in eelgrass (Zostera marina L.) meadows in Willapa Bay, Washington, and Coos Bay, Oregon, estuaries. Estuaries and Coasts 26 (4): 1117–1129.

    Article  Google Scholar 

  • Thomson, J.A., D.A. Burkholder, M.R. Heithaus, J.W. Fourqurean, M.W. Fraser, J. Statton, and G.A. Kendrick. 2015. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology 21 (4): 1463–1474.

    Article  Google Scholar 

  • Touchette, B.W., J.M. Burkholder, and H.B. Glasgow. 2003. Variations in eelgrass (Zostera marina L.) morphology and internal nutrient composition as influenced by increased temperature and water column nitrate. Estuaries 26 (1): 142–155.

    Article  Google Scholar 

  • Van Kooten, O., and J.F. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25 (3): 147–150.

    Article  Google Scholar 

  • Wang, D., T.C. Gouhier, B.A. Menge, and A.R. Ganguly. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518 (7539): 390–394.

    Article  CAS  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, and A.R. Hughes. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106 (30): 12377–12381.

    Article  CAS  Google Scholar 

  • York, P.H., R.K. Gruber, R. Hill, P.J. Ralph, D.J. Booth, and P.I. Macreadie. 2013. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS One 8 (10): e76377.

    Article  CAS  Google Scholar 

  • Zimmerman, R.C. 2003. A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnology and Oceanography 48 (1part2): 568–585. https://doi.org/10.4319/lo.2003.48.1_part_2.0568.

    Article  Google Scholar 

  • Zimmerman, R.C., R.D. Smith, and R.S. Alberte. 1989. Thermal acclimation and whole-plant carbon balance in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and Ecology 130 (2): 93–109. https://doi.org/10.1016/0022-0981(89)90197-4.

    Article  CAS  Google Scholar 

  • Zimmerman, R.C., V.J. Hill, and C.L. Gallegos. 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnology and Oceanography 60 (5): 1781–1804.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank HK Kim, ES Kim, Z Suonan, SJ Na, G Lee, and YJ Hyun for their many hours of field and laboratory assistance.

Funding

This research was supported by the Ministry of Oceans and Fisheries, Korea (Project titles: ‘Long-term changes in structure and function in the marine ecosystems of Korea’ and ‘Development of blue carbon information system and its assessment for management’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Seop Lee.

Additional information

Communicated by Masahiro Nakaoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Qin, LZ., Kim, S.H. et al. Influence of Water Temperature Anomalies on the Growth of Zostera marina Plants Held Under High and Low Irradiance Levels. Estuaries and Coasts 43, 463–476 (2020). https://doi.org/10.1007/s12237-019-00578-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00578-2

Keywords

Navigation