Skip to main content
Log in

Thermal Cyclic Fatigue Behavior of Nanostructured YSZ/NiCrAlY Compositionally Graded Thermal Barrier Coatings

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this research, thermal cyclic fatigue (TCF) behavior of a compositionally graded layer (CGL) nanostructured coating was investigated and compared with the TCF behavior of a micro-CGL coating. The layers, as a thermal barrier coating (TBC), were made from nanostructured and/or conventional micro-sized yttria-stabilized zirconia (YSZ) and NiCrAlY powders. According to the composition of each layer, a certain ratio of YSZ/NiCrAlY powder was mixed and deposited by air plasma spray process on IN 738-LC as a substrate. In order to investigate the effect of temperature on the lifetime of coatings, TCF tests were conducted at two different high temperatures (900 and 1100 °C). These tests were done by holding the samples at the mentioned temperatures for 1 h and then fast cooling to 100 °C by compressed air for 10 min. Microstructural evaluation showed that there were some differences between the damage mechanisms of these two groups of compositionally graded TBCs. The results also showed that the average thermal cyclic lifetime of nanostructured compositionally graded TBCs is approximately 1.6 times higher than that of the micro-one. Moreover, it was indicated that the presence of much more spinel oxide regions formed at higher temperature has a remarkable effect on the lifetime of compositionally graded TBCs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. U. Leushake, T. Krell, U. Schulz, Materials Science and Engineering Technology 28, 391 (2004). https://doi.org/10.1002/mawe.19970280817.

  2. N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002). https://doi.org/10.1126/science.1068609.

    Article  Google Scholar 

  3. M. Hatami, F. Naeimi, M. Shamanian, and M. Tahari, Oxidation of Metals 90, 153 (2018). https://doi.org/10.1007/s11085-017-9829-y.

    Article  Google Scholar 

  4. K. Ito, H. Kuriki, H. Araki, S. Kuroda, and M. Enoki, Science and Technology of Advanced Materials 15, 35007 (2014). https://doi.org/10.1088/1468-6996/15/3/035007.

    Article  Google Scholar 

  5. J. T. DeMasi-Marcin, and D. K. Gupta, Surface and Coatings Technology 68–69, 1 (1994). https://doi.org/10.1016/0257-8972(94)90129-5.

    Article  Google Scholar 

  6. K. M. Doleker, H. Ahlatci, and A. C. Karaoglanli, Oxidation of Metals 88, 109 (2017). https://doi.org/10.1007/s11085-016-9690-4.

    Article  Google Scholar 

  7. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J.-E. Döring, and R. Vassen, Journal of Thermal Spray Technology 13, 76 (2004). https://doi.org/10.1007/s11666-004-0052-4.

    Article  Google Scholar 

  8. J. A. Thompson, and T. W. Clyne, Acta Materialia 49, 1565 (2001). https://doi.org/10.1016/S1359-6454(01)00065-9.

    Article  Google Scholar 

  9. G. Shanmugavelayutham, and A. Kobayashi, Materials Chemistry and Physics 103, 283 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.066.

    Article  Google Scholar 

  10. M. Ekström, A. Thibblin, A. Tjernberg, C. Blomqvist, and S. Jonsson, Surface and Coatings Technology 272, 198 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.005.

    Article  Google Scholar 

  11. F. Zhou, Y. Wang, L. Wang, Z. Cui, and Z. Zhang, Journal of Alloys and Compounds 704, 614 (2017). https://doi.org/10.1016/j.jallcom.2017.02.073.

    Article  Google Scholar 

  12. X. Chen, L. Gu, B. Zou, Y. Wang, and X. Cao, Surface and Coatings Technology 206, 2265 (2012). https://doi.org/10.1016/j.surfcoat.2011.09.076.

    Article  Google Scholar 

  13. S. Nath, I. Manna, and J. D. Majumdar, Journal of Thermal Spray Technology 22, 901 (2013). https://doi.org/10.1007/s11666-013-9937-4.

    Article  Google Scholar 

  14. D. Yang, Y. Gao, H. Liu, and C. Sun, Surface and Coatings Technology 315, 9 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.112.

    Article  Google Scholar 

  15. Q. Yu, A. Rauf, N. Wang, and C. Zhou, Ceramic International 37, 1093 (2011). https://doi.org/10.1016/j.ceramint.2010.11.033.

    Article  Google Scholar 

  16. H. Jamali, R. Mozafarinia, R. Shoja Razavi, R. Ahmadi-Pidani, Ceramics International 38, 6705 (2012). https://doi.org/10.1016/j.ceramint.2012.05.060.

  17. M. Zhai, D. Li, Y. Zhao, X. Zhong, F. Shao, H. Zhao, C. Liu, and S. Tao, Ceramic International 42, 12172 (2016). https://doi.org/10.1016/j.ceramint.2016.04.153.

    Article  Google Scholar 

  18. G.-R. Li, G.-J. Yang, C.-X. Li, and C.-J. Li, Ceramic International 43, 9600 (2017). https://doi.org/10.1016/j.ceramint.2017.04.083.

    Article  Google Scholar 

  19. K. Jiang, S. Liu, and X. Wang, Ceramic International 43, 12633 (2017). https://doi.org/10.1016/j.ceramint.2017.06.142.

    Article  Google Scholar 

  20. R. S. Lima, and B. R. Marple, Materials Science and Engineering A 485, 182 (2008). https://doi.org/10.1016/j.msea.2007.07.082.

    Article  Google Scholar 

  21. G. Di Girolamo, F. Marra, C. Blasi, E. Serra, and T. Valente, Ceramic International 37, 2711 (2011). https://doi.org/10.1016/j.ceramint.2011.04.024.

    Article  Google Scholar 

  22. S. Nath, I. Manna, and J. D. Majumdar, Corrosion Science 88, 10 (2014). https://doi.org/10.1016/j.corsci.2014.06.050.

    Article  Google Scholar 

  23. K. A. Khor, and Y. W. Gu, Thin Solid Films 372, 104 (2000). https://doi.org/10.1016/S0040-6090(00)01024-5.

    Article  Google Scholar 

  24. C. Zhou, N. Wang, and H. Xu, Materials Science and Engineering A 452453, 569 (2007). https://doi.org/10.1016/j.msea.2006.11.027.

    Article  Google Scholar 

  25. C. Zhou, N. Wang, Z. Wang, S. Gong, and H. Xu, Scripta Materialia 51, 945 (2004). https://doi.org/10.1016/j.scriptamat.2004.07.024.

    Article  Google Scholar 

  26. K. P. Jonnalagadda, R. Eriksson, K. Yuan, X.-H. Li, X. Ji, Y. Yu, and R. L. Peng, Journal of the European Ceramic Society 37, 2889 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.054.

    Article  Google Scholar 

  27. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, Surface and Coatings Technology 201, 1074 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.023.

    Article  Google Scholar 

  28. E. P. Busso, J. Lin, S. Sakurai, and M. Nakayama, Acta Materialia 49, 1515 (2001).https://doi.org/10.1016/S1359-6454(01)00060-X.

  29. A. Rabiei, and A. G. Evans, Acta Materialia 48, 3963 (2000). https://doi.org/10.1016/S1359-6454(00)00171-3.

    Article  Google Scholar 

  30. J. Wu, H. Guo, L. Zhou, L. Wang, and S. Gong, Journal of Thermal Spray Technology 19, 1186 (2010). https://doi.org/10.1007/s11666-010-9535-7.

    Article  Google Scholar 

  31. P. Carpio, M. D. Salvador, A. Borrell, and E. Sánchez, Ceramic International 43, 4048 (2017). https://doi.org/10.1016/j.ceramint.2016.11.178.

    Article  Google Scholar 

  32. M. G. Gok, and G. Goller, Journal of the European Ceramic Society 37, 2501 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.004.

    Article  Google Scholar 

  33. W. R. Chen, X. Wu, B. R. Marple, and P. C. Patnaik, Surface and Coatings Technology 197, 109 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.027.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Sajjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezavar, A., Sajjadi, S.A., Babakhani, A. et al. Thermal Cyclic Fatigue Behavior of Nanostructured YSZ/NiCrAlY Compositionally Graded Thermal Barrier Coatings. Oxid Met 92, 89–107 (2019). https://doi.org/10.1007/s11085-019-09915-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09915-z

Keywords

Navigation