Skip to main content
Log in

Cointegration in continuous time for factor models

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

We develop cointegration for multivariate continuous-time stochastic processes, both in finite and infinite dimension. Our definition and analysis are based on factor processes and operators mapping to the space of prices and cointegration. The focus is on commodity markets, where both spot and forward prices are analysed in the context of cointegration. We provide many examples which include the most used continuous-time pricing models, including forward curve models in the Heath–Jarrow–Morton paradigm in Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aadland, R., Benth, F.E., Koekebakker, S.: Multivariate modeling and analysis of regional ocean freight rates. Transp. Res. Part E 113, 194–221 (2018)

    Article  Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Applebaum, D.: Infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes. Probab. Surv. 12, 33–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Back, J., Prokopczuk, M.: Commodity price dynamics and derivative valuation: a review. Int. J. Theor. Appl. Finance 16(6), 1350032 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barndorff-Nielsen, O.E., Benth, F.E., Veraart, A.: Modelling energy spot prices by volatility modulated Lévy-driven Volterra processes. Bernoulli 19, 803–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benth, F.E.: Cointegrated commodity markets and pricing of derivatives in a non-Gaussian framework. In: Kallsen, J., Papapantoleon, A. (eds.) Advanced Modelling in Mathematical Finance. Festschrift in honour of Ernst Eberlein, pp. 477–496. Springer, Berlin (2016)

  7. Benth, F.E., Šaltytė Benth, J., Koekebakker, S.: Stochastic Modelling of Electricity and Related Markets. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  8. Benth, F.E., Šaltytė Benth, J.: Modeling and Pricing in Financial Markets for Weather Derivatives. World Scientific, Singapore (2013)

    MATH  Google Scholar 

  9. Benth, F.E., Müller, G., Klüppelberg, C., Vos, L.: Futures pricing in electricity markets based on stable CARMA spot models. Energy Econ. 44, 392–406 (2014)

    Article  Google Scholar 

  10. Benth, F.E., Koekebakker, S.: Pricing of forwards and other derivatives in cointegrated commodity markets. Energy Econ. 52, 104–117 (2015)

    Article  Google Scholar 

  11. Benth, F.E., Krühner, P.: Representation of infinite dimensional forward price models in commodity markets. Commun. Math. Stat. 2(1), 47–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benth, F.E., Krühner, P.: Derivatives pricing in energy markets: an infinite dimensional approach. SIAM J. Financ. Math. 6, 825–869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benth, F.E., Ortiz-Latorre, S.: A pricing measure to explain the risk premium in power markets. SIAM J. Financ. Math. 5, 685–728 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brockwell, P.J.: Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53, 113–124 (2001)

    Article  MATH  Google Scholar 

  15. Comte, F.: Discrete and continuous time cointegration. J. Econom. 88, 207–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cuchiero, C., Keller-Ressel, M., Teichmann, J.: Polynomial processes and their applications to mathematical finance. Finance Stoch. 16, 711–740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duan, J.-C., Pliska, S.R.: Option valuation with cointegrated asset prices. J. Econ. Dyn. Control 28, 727–754 (2004)

    Article  MATH  Google Scholar 

  18. Duan, J.-C., Theriault, A.: Cointegration in Crude Oil Components and the Pricing of Crack Spread Options. Working paper, University of Toronto (2007)

  19. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation and testing. Econometrica 55(2), 251–276 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eydeland, A., Wolyniec, K.: Energy and Power Risk Management: New Developments in Modeling. Pricing and Hedging. Wiley, Hoboken (2003)

    Google Scholar 

  21. Farkas, W., Gourier, E., Huitema, R., Necula, C.: A two-factor cointegrated commodity price model with an application to spread option pricing. J. Bank. Finance 77, 249–268 (2017)

    Article  Google Scholar 

  22. Filipović, D.: Consistency Problems for Heath-Jarrow-Morton Interest Rate Models, vol. 1760. Lecture Notes in Mathematics, Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Filipović, D.: Time-inhomogeneous affine processes. Stoch. Proc. Appl. 115(4), 639–659 (2005)

    Article  Google Scholar 

  24. Filipović, D., Larsson, M.: Polynomial diffusions and applications in finance. Finance Stoch. 20, 931–972 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Filipović, D., Larsson, M., Trolle, A.: On the relation between linearity-generating processes and linear-rational models. In: Swiss Finance Institute Research Paper, No. 16–23. Available at SSRN: https://ssrn.com/abstract=2753484. To appear in J. Finance (2017)

  26. Gabaix, X.: Linearity-generating processes: a modelling tool yielding closed forms for asset prices. In: NBER Working paper, 13430, September (2007)

  27. Geman, H.: Commodities and Commodity Derivatives. Wiley, Chichester (2005)

    Google Scholar 

  28. Geman, H., Liu, B.: Are world natural gas markets moving toward integration? Evidence from the Henry Hub and National Balancing Point forward curves. J. Energy Mark. 8(2), 47–65 (2015)

    Article  Google Scholar 

  29. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60(1), 77–105 (1992)

    Article  MATH  Google Scholar 

  30. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1991)

    MATH  Google Scholar 

  31. Kevei, P.: Asymptotic moving average representation of high-frequency sampling of multivariate CARMA processes. Ann. Inst. Stat. Math. 70(2), 467–487 (2018)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lucia, J., Schwartz, E.S.: Electricity prices and power derivatives: evidence from the nordic power exchange. Rev. Deriv. Res. 5(1), 5–50 (2002)

    Article  MATH  Google Scholar 

  33. Marquardt, T., Stelzer, R.: Multivariate CARMA processes. Stoch. Process. Appl. 117, 96–120 (2007)

    Article  Google Scholar 

  34. Nakajima, K., Ohashi, K.: A cointegrated commodity pricing model. J. Futures Mark. 32(11), 995–1033 (2012)

    Article  Google Scholar 

  35. Paschke, R., Prokopczuk, M.: Integrating multiple commodities in a model of stochastic price dynamics. J. Energy Mark. 2(3), 47–68 (2009)

    Article  Google Scholar 

  36. Paschke, R., Prokopczuk, M.: Commodity derivatives valuation with autoregressive and moving average components in the price dynamics. J. Bank. Finance 34, 2742–2752 (2010)

    Article  Google Scholar 

  37. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  38. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  39. Schlemm, E., Stelzer, R.: Multivariate CARMA processes, continuous-time state space models and complete regularity of the innovations of the sampled processes. Bernoulli 18, 46–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tehranchi, M.: A note on invariant measures for HJM models. Finance Stoch. 9(3), 389–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Espen Benth.

Additional information

F. E. Benth acknowledges financial support from the project FINEWSTOCH funded by the Norwegian Research Council. A. Süss acknowledges partial financial support by the Grant MTM 2015-65092-P, Secretaria de estado de investigacion, desarrollo e innovacion, Ministerio de Economia y Competitividad, Spain. Two anonymous referees are thanked for their careful reading and constructive criticism of a former version of this paper, leading to a significantly improved presentation.

Appendix A. The Filipović space

Appendix A. The Filipović space

We present the Filipović space following Filipović [22]: Let \(w:\mathbb {R}_+\rightarrow \mathbb {R}_+\) be a monotonely increasing function with \(w(0)=1\) and \(\int _0^{\infty }w^{-1}(x)\,dx<\infty \). Introduce the Filipović space, denoted \(\mathsf H_w\), as the space of absolutely continuous functions \(f:\mathbb {R}_+\rightarrow \mathbb {R}\) for which

$$\begin{aligned} |f|_w^2:=f^2(0)+\int _0^{\infty }w(x)(f'(x))^2\,dx<\infty , \end{aligned}$$

where \(f'\) is the weak derivative of f. With the inner product

$$\begin{aligned} (f,g)_w=f(0)g(0)+\int _0^{\infty }w(x)f'(x)g'(x)\,dx \end{aligned}$$

for \(f,g\in \mathsf H_w\), \(\mathsf H_w\) becomes a separable Hilbert space. The shift operator \({\mathcal {S}}(t):f\mapsto f(t+\cdot )\) for \(t\ge 0\) defines a \(C_0\)-semigroup on \(\mathsf H_w\) which is uniformly bounded. Moreover, Benth and Krühner [11] show that the shift operator is quasi-contractive. The generator of \({\mathcal {S}}(t)\) is the derivative operator. The evaluation map \(\delta _x:f\mapsto f(x)\) is a linear functional on \(\mathsf H_w\). Finally, from Benth and Krühner [11], \(\mathsf H_w\) becomes a Banach algebra after appropriate rescaling of the norm \(|\cdot |_w\), that is, if \(f,g\in H_w\), then \(fg\in H_w\) and \(\Vert fg\Vert _w\le \Vert f\Vert _w\Vert g\Vert _w\) with \(\Vert \cdot \Vert _w:=c|\cdot |_w\) for a suitable constant \(c>0\) depending on \(\int _0^{\infty }w^{-1}(x)\,dx\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benth, F.E., Süss, A. Cointegration in continuous time for factor models. Math Finan Econ 13, 87–114 (2019). https://doi.org/10.1007/s11579-018-0221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-018-0221-8

Keywords

JEL Classification

Navigation