Skip to main content
Log in

Photocatalytic Activation of Carbon Monoxide on Semiconductors and Derived Nanocomposites: Basic Principles and Mechanisms: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The available data on the photocatalytic activation of carbon monoxide are summarized. The most important directions of research and development in this area are examined. The related electronic processes are analyzed and reaction mechanisms in these systems are proposed. The most promising directions for further research in this area are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  1. S. Nigam, R. Nigam, M. Kulshrestha, and S. K. Mittal, Environ. Rev., 18, 137-158 (2010).

    Article  CAS  Google Scholar 

  2. V. I. Korzhkov, A. V. Vidmachenko, and M. V. Korzhkov, Zh. Akad. Med. Nauk Ukraini, 16, No. 1, 23-37 (2010).

    Google Scholar 

  3. M. Amann, Z. Klimont, and F. Wagner, Annu. Rev. Environ. Resour., 38, 31-55 (2013).

    Article  Google Scholar 

  4. T. A. Semenova, I. L. Leites, Yu. V. Aksel’rod, et al., Purification of Industrial Gases [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  5. L. T. Bugaenko, M. G. Kuz’min, and L. S. Polak, High Energy Chemistry [in Russian], Khimiya, Moscow (1988).

    Google Scholar 

  6. O. M. Stepanenko, L. R. Reiter, V. M. Ledovs’kikh, et al., General and Inorganic Chemistry [in Ukrainian], Ped. Presa, Kiev (2002).

    Google Scholar 

  7. G. E. Scuseria, M. D. Miller, F. Jensen, and J. Geertsen, J. Chem. Phys., 94, No. 10, 6660-6663 (1991).

    Article  CAS  Google Scholar 

  8. N. L. Glinka, General Chemistry [in Russian], Integral-Press, Moscow (2003).

    Google Scholar 

  9. N. S. Akhmetov, General and Inorganic Chemistry [in Russian], Vysshaya Shkola Izd. Tsentr Akademiya, Moscow (2001).

    Google Scholar 

  10. A. Ernst and J. D. Zibrak, New England Journal of Medicine, 339, No. 22, 1603-1608 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. V. V. Kuznetsov, Soros. Obrazovat. Zh., 1, 35-40 (1999).

    Google Scholar 

  12. S. O. Apostolyuk, V. S. Dzhigirei, I. A. Sokolovs’kikh, et al., Industrial Ecology [in Ukrainian], Znaniya, Kiev (2012).

    Google Scholar 

  13. R. R. Ford, Adv. Catal., 21, 51 (1971).

    Google Scholar 

  14. P. Y. Yang, S. P. Ju, Z. M. Lai, et al., Nanoscale, 8, No. 4, 2041-2045 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. S. Royer and D. Duprez, ChemCatChem, 3, No. 1, 2465 (2011).

    Article  CAS  Google Scholar 

  16. R. I. Kuz’mina and V. P. Sevost’yanov, Ros. Khim. Zhurn., 44, No. 1, 71-77 (2000).

    Google Scholar 

  17. N. N. Vershinin, N. F. Gol’dshleger, O. N. Efimov, and A. L. Gusev, Al’ternativn. Énerget. Ékol. (ISJAEE), 8, 99-116 (2008).

    Google Scholar 

  18. O. A. Fedyaeva and V. O. Onuchina, Nauka, Mysl’: Élektron. Periodich. Zh., No. 2, 164-168 (2017).

  19. J. M. Herrmann, P. Vergnon, and S. J. Teichner, J. Catal., 37, No. 1, 57-67 (1975).

    Article  CAS  Google Scholar 

  20. H. A. Gastiger, N. M. P. N. Markovic, P. N. Ross, and E. J. Cairns, J. Phys. Chem., 98, No. 2, 617-625 (1994).

    Article  Google Scholar 

  21. M. Arenz, K. J. Mayrhofer, V. Stamenkovic, et al., J. Am. Chem. Soc., 127, No. 18, 6819-6829 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev., 95, No. 3, 735-758 (1995).

    Article  CAS  Google Scholar 

  23. T. Ferenchi. T. Strøm, and J. R. Quayle, Microbiology, 91, No. 1, 79-91 (1975).

    Google Scholar 

  24. M. Köpke, C. Mihalcea, J. C. Bromley, and S. D. Simpson, Curr. Opin. Biotech., 22, No. 3, 320-325 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. M. Haruta, Catal. Today, 36, No. 1, 153-166 (1997).

    Article  CAS  Google Scholar 

  26. G. C. Bond and D. T. Thompson, Gold Bull., 33, No. 2, 41-50 (2000).

    Article  CAS  Google Scholar 

  27. F. Boccuzzi and A. Chiorino, J. Phys. Chem. B, 104, No. 23, 5414-5416 (2000).

    Article  CAS  Google Scholar 

  28. Y. Maeda, Y. Iizuka, and M. Kohyama, J. Am. Chem. Soc., 135, No. 2, 906-909 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. R. Si, J. Liu, K. Yang, et al., J. Catal., 311, 71-79 (2014).

    Article  CAS  Google Scholar 

  30. R. Si, Y. Zhang, et al., Appl. Surf. Sci., 387, 1062-1071 (2016).

    Article  CAS  Google Scholar 

  31. N. D. Ivanova, I. S. Makeeva, G. V. Sokol’skii, et al., Zh. Prikl. Khim., 75, No. 9, 1452-1455 (2002).

    Google Scholar 

  32. A. L. Lapidus and A. Yu. Krylova, Ros. Khim. Zh., 49, No. 1, 43-56 (2000).

    Google Scholar 

  33. G. G. Jernigan and G. A. Somorjai, J. Catal., 147, No. 2, 567-577 (1994).

    Article  CAS  Google Scholar 

  34. N. N. Vershinin, V. I. Berestenko, O. N. Efimov, et al., High Energ. Chem., 52, No. 1, 90-94 (2018).

    Article  CAS  Google Scholar 

  35. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, et al., Khim. Vysok. Énergii, 50, No. 4, 305-310 (2016).

    Google Scholar 

  36. V. K. Yatsimirskii, L. P. Oleksenko, and L. V. Lutsenko, Katal. Neftekhim., 14, 71-76 (2006).

    Google Scholar 

  37. T. S. Nagarjunan and J. G. Calvert, J. Phys. Chem., 68, No. 1, 17-26 (1964).

    Article  CAS  Google Scholar 

  38. W. Doerffler and K. Hauffe, J. Catal., 3, No. 2, 171-178 (1964).

    Article  CAS  Google Scholar 

  39. A. Ikekawa, M. Kamiya, Y. Fujita, and T. Kwan, Bull. Chem. Soc. Jpn, 38, No. 1, 32-36 (1965).

    Article  CAS  Google Scholar 

  40. K. M. Sancier, J. Catal., 9, No. 4, 331-335 (1967).

    Article  CAS  Google Scholar 

  41. K. Tanaka and G. Blyholder, J. Phys. Chem., 76, No. 22, 3184-3187 (1972).

    Article  CAS  Google Scholar 

  42. L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 3, No. 2, 218-225 (1967). [Theor. Exp. Chem., 3, No. 2, 120-125 (1967) (English translation).]

  43. L. V. Lyashenko and Ya. B. Gorokhovatskii, Kinet. Katal., 9, No. 8, 1180-1182 (1968).

    CAS  Google Scholar 

  44. L. V. Lyashenko and Ya. B. Gorokhovatskii, Dokl. Akad. Nauk SSSR, 186, No. 5, 1125-1127 (1969).

    CAS  Google Scholar 

  45. L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 8, No. 6, 840-844 (1972). [Theor. Exp. Chem., 8, No. 696-699 (1972) (English translation).]

  46. L. V. Lyashenko and Ya. B. Gorokhovatskii, Teor. Éksp. Khim., 10, No. 2, 186-192 (1974). [Theor. Exp. Chem., 10, No. 2, 138-142 (1974) (English translation).]

  47. W. R. Murphy, T. F. Veerkamp, and T. W. Leland, J. Catal., 43, No. 1, 304-321 (1976).

    Article  CAS  Google Scholar 

  48. M. Schiavello (ed.), Photoelectrochemistry, Photocatalysis and Photoreactors. Fundamentals and Developments (Nato Science Series C, Vol 146), Springer Science & Business Media (2013).

  49. N. B. Wong and J. H. Lunsford, J. Chem. Phys., 56, No. 6, 2664-2667 (1972).

    Article  CAS  Google Scholar 

  50. V. A. Shvets and V. B. Kazansky, J. Catal., 25, No. 1, 123-130 (1972).

    Article  CAS  Google Scholar 

  51. V. S. Zakharenko, A. E. Cherkashin, N. P. Keier, and S. V. Koshcheev, Kinet. Katal., 16, No. 1, 182-189 (1975).

    CAS  Google Scholar 

  52. A. M. Volodin and A. E. Cherkashin, Kinet. Katal., 22, No. 3, 598-606 (1981).

    CAS  Google Scholar 

  53. K. Tanaka and G. Blyholder, J. Phys. Chem., 76, No. 13, 1807-1814 (1972).

    Article  CAS  Google Scholar 

  54. F. Steinbach and R. Harborth, Faraday Discuss., 58, 143-150 (1974).

    Article  Google Scholar 

  55. Y. Yoshida, T. Itoi, and Y. Izumi, J. Phys. Chem. C, 119, No. 37, 21585-21598 (2015).

    Article  CAS  Google Scholar 

  56. A. Fujishima and K. Honda, Nature, 238, No. 5358, 37 (1972).

    Article  CAS  PubMed  Google Scholar 

  57. A. Thevenet, F. Juillet, and S. J. Teichner, Jap. J. Appl. Phys., 13, No. S2, 529 (1974).

    Article  Google Scholar 

  58. H. Courbon, M. Formenti and P. Pichat, J. Phys. Chem., 81, No. 6, 550-554 (1977).

    Article  CAS  Google Scholar 

  59. A. Linsebigler, G. Lu, and J. T. Yates, J. Phys. Chem., 100, No. 16, 6631-6636 (1996).

    Article  CAS  Google Scholar 

  60. N. G. Petrik and G. A. Kimmel, J. Phys. Chem. Lett., 1, No. 17, 2508-2513 (2010).

    Article  CAS  Google Scholar 

  61. N. G. Petrik and G. A. Kimmel, J. Phys. Chem. Lett., 4, No. 3, 344-349 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. K. E. Kweon, D. Manogaran, and G. S. Hwang, ACS Catal., 4, No. 11, 4051-4056 (2014).

    Article  CAS  Google Scholar 

  63. N. G. Petrik, R. Mu, A. Dahal, et al., J. Phys. Chem. C, 122, No. 27, 15382-15389 (2018).

    Article  CAS  Google Scholar 

  64. R. V. Mikhaylov, K. V. Nikitin, N. I. Glazkova, and V. N. Kuznetsov, J. Photochem. Photobiol. A, 360, 255-261 (2018).

    Article  CAS  Google Scholar 

  65. W. Dai, X. Chen, X. Zheng, et al., ChemPhysChem, 10, No. 2, 411-419 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. I. V. Blashkov, L. L. Basov, and A. A. Lisachenko, J. Phys. Chem. C, 121, No. 51, 28364-28372 (2017).

    Article  CAS  Google Scholar 

  67. R. Mu, A. Dahal, Z. T. Wang, et al., J. Phys. Chem. Lett., 8, No. 18, 4564-4572 (2017).

    Article  CAS  Google Scholar 

  68. J. M. Herrmann, H. Courbon, J. Disdier, et al., Stud. Surf. Sci. Catal., 55, 675-682 (1990).

    Article  CAS  Google Scholar 

  69. H. Akbari and P. Berdahl, Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants: PIER Final Project Report, California Energy Commission (2008).

  70. D. V. Barsukov, A. N. Pershin, and I. R. Subbotina, J. Photochem. Photobiol. A, 324, 175-183 (2016).

    Article  CAS  Google Scholar 

  71. D. V. Barsukov and I. R. Subbotina, Russ. Chem. Bull., 67, No. 2, 243-251 (2018).

    Article  CAS  Google Scholar 

  72. F. Juillet, F. Lecomte, H. Mozzenega, et al., Faraday Symp. Chem. Soc., 7, 57-62 (1973).

    Article  CAS  Google Scholar 

  73. A. V. Vorontsov, E. N. Savinov, G. B. Barannik, et al., Catal. Today, 39, No. 3, 207-218 (1997).

    Article  CAS  Google Scholar 

  74. C. Zhou, L. Cheng, Y. Li, et al., Appl. Catal. B, 255, 314-323 (2018).

    Article  CAS  Google Scholar 

  75. J. Xu, X. Li, X. Wu, et al., J. Phys. Chem. C, 120, No. 23, 12666-12672 (2016).

    Article  CAS  Google Scholar 

  76. A. Ogata, A. Kazusaka, and M. Enyo, J. Phys. Chem., 90, No. 21, 5201-5205 (1986).

    Article  CAS  Google Scholar 

  77. T. Tanaka, H. Nojima, T. Yamamoto, et al., Phys. Chem. Chem. Phys., 1, No.22, 5235-5239 (1999).

    Article  CAS  Google Scholar 

  78. G. Karakas and P. Yetisemiyen, Top. Catal., 56, Nos. 18-20, 1883-1891 (2013).

    Article  CAS  Google Scholar 

  79. K. Takahama, T. Sako, M. Yokoyama, and S. Hirao, Nippon Kagaku Kaishi, 7, 613-618 (1994).

    Article  Google Scholar 

  80. F. Sastre, A. Corma, and H. García, Angew. Chem. Int. Ed., 52, No. 49, 12983-12987 (2013).

    Article  CAS  Google Scholar 

  81. H. van Damme and W. K. Hall, J. Catal., 69, No. 2, 371-383 (1981).

    Article  Google Scholar 

  82. A. V. Vorontsov, E. N. Savinov, and J. Zhensheng, J. Photochem. Photobiol. A, 125, Nos.1-3, 113-117 (1999).

    Article  CAS  Google Scholar 

  83. M. Zhang, Z. Jin, J. Zhang, et al., J. Mol. Catal. A, 225, No. 1, 59-63 (2005).

    Article  CAS  Google Scholar 

  84. R. M. Mohamed and E. S. Aazam, J. Alloys Compd., 509, No. 41, 10132-10138 (2011).

    Article  CAS  Google Scholar 

  85. H. Einaga, M. Harada, S. Futamura, and T. Ibusuki, J. Phys. Chem. B, 107, No. 35, 92909297 (2003).

    Article  CAS  Google Scholar 

  86. S. Hwang, M. C. Lee, and W. Choi, Appl. Catal. B, 46, No. 1, 49-63 (2003).

    Article  CAS  Google Scholar 

  87. N. S. Kolobov, D. A. Svintsitskiy, E. A. Kozlova, et al., Chem. Eng. J., 314, 600-611 (2017).

    Article  CAS  Google Scholar 

  88. H. Gerischer, “Photocatalytic purification and treatment of water and air” in: Proceedings of the First International Conference on TiO2 Photocatalytic and Treatment of Water and Air, London, Ontario, Canada, Nov. 8-13, 1992, Elsevier Science, Amsterdam (1993), pp. 1-17.

  89. W. N. Wang, W. J. An, and B. Ramalingam, J. Am. Chem. Soc., 134, No. 27, 11276-11281 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. L. Xu, S. Wang, T. Zhang, and F. Chen, Catal. Sci. Technol., 7, No. 17, 3698-3701 (2017).

    Article  CAS  Google Scholar 

  91. E. Moretti, E. Rodríguez-Aguado, A. Infantes-Molina, et al., Catal. Today, 304, 135-142 (2018).

    Article  CAS  Google Scholar 

  92. K. Yang, J. Liu, R. Si, and X. Chen, J. Catal., 317, 229-239 (2014).

    Article  CAS  Google Scholar 

  93. K. Yang, C. Meng, L. Lin, et al., Catal. Sci. Technol., 6, No. 3, 829-839 (2016).

    Article  CAS  Google Scholar 

  94. J. Zou, Z. Si, Y. Cao, and R. Ran, J. Phys. Chem. C, 120, No. 51, 29116-29125 (2016).

    Article  CAS  Google Scholar 

  95. S. M. Kim, H. Lee, K. C. Goddeti, et al., J. Phys. Chem. C, 119, No. 28, 16020-16025 (2015).

    Article  CAS  Google Scholar 

  96. K. Czupryn, I. Kocemba, and J. Rynkowski, React. Kinet. Mech. Catal., 124, No. 1, 187-201 (2018).

    Article  CAS  Google Scholar 

  97. S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nature Mater., 7, No. 4, 333 (2008).

    Article  CAS  Google Scholar 

  98. L. Guczi, D. Bazin, I. Kovacs, et al., Top. Catal., 20, Nos. 1-4, 129-139 (2002).

    Article  CAS  Google Scholar 

  99. J. Suntivich, Z. Xu, C. E. Carlton, and J. Kim, J. Am. Chem. Soc., 135, No. 21, 7985-7991 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. J. Wang, P. A. Chernavskii, P. A. Khodatov, and Y. Wang, J. Catal., 286, 51-61 (2012).

    Article  CAS  Google Scholar 

  101. G. Avgouropoulos, T. Ioannides, H. K. Matralis, et al., Catal. Lett., 73, No. 1, 33-40 (2001).

    Article  CAS  Google Scholar 

  102. B. Kucharczyk, W. Tylus, J. Okal, et al., Chem. Eng. J., 309, 288-297 (2017).

    Article  CAS  Google Scholar 

  103. O. Rosseler, C. Ulhaq-Bouillet, A. Bonnefont, et al., Appl. Catal. B, 166, 381-392 (2015).

    Article  CAS  Google Scholar 

  104. T. Zhang, S. Wang, and F. Chen, J. Phys. Chem. C, 120, No. 18, 9732-9739 (2016).

    Article  CAS  Google Scholar 

  105. I. Barroso-Martín, A. Infantes-Molina, A. Talon, et al., Materials, 11, No. 7, 1203 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  106. A. L. Stroyuk, A. I. Kryukov, S. Ya. Kuchmii, and V. D. Pokhodenko, Teor. Éksp. Khim., 41, No. 4, 199-218 (2005). [Theor. Exp. Chem., 41, No. 4, 207-228 (2005) (English translation).]

  107. N. Seifvand and E. Kowsari, RSC Adv., 5, No. 114, 93706-93716 (2015).

    Article  CAS  Google Scholar 

  108. T. Y. Ma, Z. Y. Yuan, and J. L. Cao, Eur. J. Inorg. Chem., 2010, No. 5, 716-724 (2010).

    Article  CAS  Google Scholar 

  109. Q. Xie, Y. Zhao, H. Guo, et al, ACS Appl. Mater. Interfaces, 6, No. 1, 421-428 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. N. Liu, X. Chen, J. Zhang, and J. W. Schwank, Catal. Today, 258, 139-147 (2015).

    Article  CAS  Google Scholar 

  111. Y. Jiao, H. Jiang, and F. Chen, ACS Catal., 4, No. 7, 2249-2257 (2014).

    Article  CAS  Google Scholar 

  112. Y. He, D. Langsdorf, L. Li, and H. Over, J. Phys. Chem. C, 119, No. 5, 2692-2702 (2015).

    CAS  Google Scholar 

  113. S. Moussa, V. Abdelsayed, and M. S. El-Shall, Chem. Phys. Lett., 510, Nos. 4-6, 179-184 (2011).

    Article  CAS  Google Scholar 

  114. Y. Yang, Y. Li, M. Zeng, and M. Mao, Appl. Catal. B, 224, 751-760 (2018).

    Article  CAS  Google Scholar 

  115. S. I. In, P. C. Vesborg, B. L. Abrams, et al., J. Photochem. Photobiol. A, 222, No. 1, 258-262 (2011).

    Article  CAS  Google Scholar 

  116. Z. Yin, S. Wan, J. Yang, et al., Coord. Chem. Rev., 378, 500-512 (2019).

    Article  CAS  Google Scholar 

  117. A. Dhakshinamoorthy, Z. Li, and H. Garcia, Chem. Soc. Rev., 47, No. 22, 8134-8172 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Y. Zhang, Q. Li, C. Liu, and X. Shan, Appl. Catal. B, 224, 283-294 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Ovcharov.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 3, pp. 160-180, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharov, M.L., Granchak, V.M. Photocatalytic Activation of Carbon Monoxide on Semiconductors and Derived Nanocomposites: Basic Principles and Mechanisms: A Review. Theor Exp Chem 55, 173–200 (2019). https://doi.org/10.1007/s11237-019-09608-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09608-3

Key words

Navigation