Skip to main content
  • Original Article
  • Published:

X-ray tomography as a tool for detailed anatomical analysis

La micro-tomographie RX, un outil pour une analyse anatomique fine du bois

Abstract

  • • Wood identification, anatomical examination and retrieval of quantitative information are important aspects of many research disciplines. Conventional light microscopy with a camera and (semi)-automatic image analysis software is an often used methodology for these purposes. More advanced techniques such as fluorescence, scanning electron, transmission electron, confocal laser scanning and atomic force microscopy are also part of the toolset answering to the need for detailed imaging.

  • • Fast, non-destructive visualization in three dimensions with high resolution combined with a broad field of view is sought-after, especially in combination with flexible software.

  • • A highly advanced supplement to the existing techniques, namely X-ray sub-micron tomography, meets these requirements. It enables the researcher to visualize the material with a voxel size approaching < 1 μm for small samples (< 1 mm). Furthermore, with tailor-made processing software quantitative data about the wood in two and three dimensions can be obtained. Examples of visualization and analysis of four wood species are given in this paper, focusing on the opportunities of tomography at micron and sub-micron resolution.

  • • X-ray computed tomography offers many possibilities for material research in general and wood science in specific, as a qualitative as well as a quantitative technique.

Résumé

  • • L’identification du bois, l’observation anatomique et l’obtention d’informations quantitatives sont des aspects importants dans différentes disciplines scientifiques. La microscopie optique conventionnelle couplée à l’acquisition et au traitement semi automatique des images est souvent utilisée pour atteindre ces objectifs. Des techniques plus récentes comme la fluorescence, la microscopie électronique par balayage ou par transmission, la microscopie confocale ou encore à force atomique constituent une panoplie d’outils répondant à ces besoins d’imagerie fine.

  • • Il y a une forte demande d’outils non destructifs de visualisation 3D à haute résolution combinés à un large champ de vision et surtout avec des logiciels flexibles.

  • • En complément avancé à ces techniques la tomographie RX submicrométrique remplit ces conditions. Elle permet au chercheur de visualiser le matériau avec une taille de voxel inférieure au micron pour de petits échantillons dont la taille est inférieure au mm. En outre, à l’aide de logiciels de traitement adaptés, des données quantitatives peuvent être obtenues pour le bois en deux et trois dimensions. Dans ce papier on présente des exemples de visualisation et d’analyse pour quatre essences en focalisant sur les possibilités de tomographie aux échelles micrométrique et submicrométrique.

  • • La tomographie RX offre de nombreuses possibilités pour la recherche en science des matériaux en général et en sciences du bois en particulier, que ce soit pour les approches qualitatives ou pour les approches quantitatives.

References

  • Badel E., Delisee C., and Lux J., 2008. 3D structural characterisation, deformation measurements and assessment of low-density wood fibreboard under compression: the use of X-ray microtomography. Compos. Sci. Technol. 68: 1654–1663.

    Article  CAS  Google Scholar 

  • Boone M., De Witte Y., Dierick M., Van den Bulcke J., Vlassenbroeck J., and Van Hoorebeke L. (2009). Practical use of the Modified Bronnikov algorithm in micro-CT. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 267: 1182–1186.

    Article  CAS  Google Scholar 

  • Cnudde V. and Jacobs P.J.S., 2004. Monitoring of weathering and conservation of building materials through non-destructive X-ray computed microtomography. Environ. Geol. 46: 477–485.

    Article  CAS  Google Scholar 

  • Coyle H.M., Ladd C., Palmbach T., and Lee H.C., 2001. The green revolution: Botanical contributions to forensics and drug enforcement. Croat. Med. J. 42: 340–345.

    Google Scholar 

  • De Vetter L., Cnudde V., Masschaele B., Jacobs P.J.S., and Van Acker J., 2006. Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT. Mater. Charact. 56: 39–48.

    Article  Google Scholar 

  • Fonti P., Solomonoff N., and Garcia-Gonzalez I., 2007. Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol. 173: 562–570.

    Article  PubMed  Google Scholar 

  • Fu D.S. and Kuduvalli G., 2008. A fast, accurate, and automatic 2D–3D image registration for image-guided cranial radiosurgery. Med. Phys. 35: 2180–2194.

    Article  PubMed  Google Scholar 

  • Fuchs A., Schreyer A., Feuerbach S., and Korb J., 2004. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manage. 50: 63–66.

    Article  Google Scholar 

  • IAWA Committee, Richter H.G., Grosser D., Heinz I., and Gasson P.E., 2004. IAWA list of microscopic features for softwood identification. IAWA J. 25: 1–70.

    Google Scholar 

  • IAWA Committee, Wheeler E.A., Baas P., and Gasson P.E., 1989. IAWA list of microscopic features for hardwood identification. IAWA Bull. 10: 219–332.

    Google Scholar 

  • Knapic S., Louzada J.L., Leal S., and Pereira H., 2007. Radial variation of wood density components and ring width in cork oak trees. Ann. For. Sci. 64: 211–218.

    Article  Google Scholar 

  • Larrabide I., Feijóo R.A., Novotny A.A., and Taroco E.A., 2008. Topological derivative: A tool for image processing. Comput. Struct. 86: 1386–1403.

    Article  Google Scholar 

  • Lee S.J. and Kim Y., 2008. In vivo visualization of the water-refilling process in xylem vessels using X-ray micro-imaging. Ann. Bot. 101: 595–602.

    Article  PubMed  Google Scholar 

  • Limaye A., 2006. Drishti — Volume exploration and presentation tool. visualization conference, Baltimore, USA.

  • Macchioni N., Palanti S., and Rozenberg P., 2007. Measurements of fungal wood decay on Scots pine and beech by means of X-ray micro-densitometry, Wood Sci. Technol. 41: 417–426.

    Article  CAS  Google Scholar 

  • Makinen H., Jyske T., and Saranaa P., 2008. Variation of tracheid length within annual rings of Scots pine and Norway spruce. Holzforschung 62: 123–128.

    Article  CAS  Google Scholar 

  • Masschaele B.C., Cnudde V., Dierick M., Jacobs P., Van Hoorebeke L., and Vlassenbroeck J., 2007. UGCT: new X-ray radiography and tomography facility, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 580: 266–269.

    Article  CAS  Google Scholar 

  • Park W.-K. and Telewski F.W., 1993. Measuring maximum latewood density by image analysis at the cellular level. Wood Fiber Sci. 25: 326–332.

    Google Scholar 

  • Philippe M. and Bamford M.K., 2008. A key to morphogenera used for Mesozoic conifer-like woods. Rev. Palaeobot. Palynol. 148: 184–207.

    Article  Google Scholar 

  • Reme P.A. and Helle T., 2002. Assessment of transverse dimensions of wood tracheids using SEM and image analysis, Holz Roh-Werkst. 60: 277–282.

    Article  Google Scholar 

  • Schweingruber F.H., 1990. Anatomy of European woods, Paul Haupt Berne and Stuttgart Publishers, Stuttgart.

    Google Scholar 

  • Steppe K., Cnudde V., Girard C., Lemeur R., Cnudde J.P., and Jacobs P., 2004. Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J. Struct. Biol. 148: 11–21.

    Article  PubMed  Google Scholar 

  • Taina I.A., Heck R.J., and Elliot T.R., 2008. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 88: 1–20.

    Article  Google Scholar 

  • Tomazello M., Brazolin S., Chagas M.P., Oliveira J.T.S., Ballarin A.W., and Benjamin C.A., 2008. Application of X-ray technique in non-destructive evaluation of eucalypt wood, Maderas-Cienc. Tecnol. 10, 139–149.

    Google Scholar 

  • Trtik P., Dual J., Keunecke D., Mannes D., Niemz P., Stahli P., Kaestner A., Groso A., and Stampanoni M., 2007. 3D imaging of microstructure of spruce wood. J. Struct. Biol: 159, 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bulcke J., Masschaele B., Dierick M., Van Acker J., Stevens M., and Van Hoorebeke L., 2008. Three-dimensional imaging and analysis of infested coated wood with X-ray submicron CT. Int. Biodeterior. Biodegrad. 61: 278–286.

    Article  Google Scholar 

  • Vlassenbroeck J., Dierick M., Masschaele B., Cnudde V., Van Hoorebeke L., and Jacobs P., 2007. Software tools for quantification of X-ray microtomography at the UGCT. Nucl. Instrum. Meth. Phys. Res. A 580: 442–445.

    Article  CAS  Google Scholar 

  • Wagenführ R., 2007. Holzatlas, Fachbuchverlag Leipzig, Leipzig.

    Google Scholar 

  • Wagenführ R. and Schreiber C., 1989. Holzatlas, 3rd éd. VEB Fachbuchverlag Leipzig, Leipzig.

    Google Scholar 

  • Wang Y., Muszynski L., and Simonsen J., 2007. Gold as an X-ray CT scanning contrast agent: Effect on the mechanical properties of wood plastic composites. Holzforschung 61: 723–730.

    Article  CAS  Google Scholar 

  • Wildenschild D., Hopmans J.W., Vaz C.M.P., Rivers M.L., Rikard D., and Christensen B.S.B., 2002. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267: 285–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Van den Bulcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Bulcke, J., Boone, M., Van Acker, J. et al. X-ray tomography as a tool for detailed anatomical analysis. Ann. For. Sci. 66, 508 (2009). https://doi.org/10.1051/forest/2009033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009033

Keywords

Mots-clés