Skip to main content

Advertisement

Log in

The Structure and Characterization of 3,4,5-Triiodo-2-Methylthiophene: An Unexpected Iodination Product of 2-Methylthiophene

  • Brief Communication
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

We report the structure and characterization of 3,4,5-triiodo-2-methylthiophene, obtained as an unexpected, unreported, and significant side product from the iodination of 2-methylthiophene using iodine and iodic acid. Identity of this unexpected product was confirmed by X-ray crystallography and 1H and 13C NMR. The compound crystallizes in the P21/c space group with unit cell parameters a = 16.4183(10) Å, b = 4.1971(3) Å, c = 14.3888(9) Å, β = 111.4442(14), Z = 4, and Dcalc = 3.425 g cm−3. Analysis of residual electron density maps indicated the presence of crystallographic disorder between the 2-methyl and 5-iodo positions leading to a model of two distinct molecules of 3,4,5-triiodo-2-methylthiophene where the atoms of these two groups were exchanged. Non-covalent iodine–iodine and sulfur–iodine interactions are observed.

Graphical Abstract

Three products, two of which are constitutional isomers, are possible when installing multiple iodine atoms on 2-methylthiophene; X-ray structural analysis and spectral characterization show that the 4,5-diiodo isomer is not formed and that the 3,4,5-triiodo isomer is unexpectedly obtained. Halogen and chalcogen bonding are clearly observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. A price comparison can be found in Table S3.

References

  1. Fitton P, Rick EA (1971) The addition of aryl halides to tetrakis(triphenylphosphine)palladium(0). J Organomet Chem 28(2):287–291. https://doi.org/10.1016/S0022-328X(00)84578-7

    Article  CAS  Google Scholar 

  2. Littke Adam F, Fu Gregory C (2002) Palladium-catalyzed coupling reactions of aryl chlorides. Angew Chem Int Ed 41 (22):4176–4211. https://doi.org/10.1002/1521-3773(20021115)41:22%3C4176::AID-ANIE4176%3E3.0.CO;2-U

    Article  CAS  Google Scholar 

  3. Racys DT, Sharif SAI, Pimlott SL, Sutherland A (2016) Silver(I)-catalyzed iodination of arenes: tuning the Lewis acidity of N-iodosuccinimide activation. J Org Chem 81(3):772–780. https://doi.org/10.1021/acs.joc.5b02761

    Article  CAS  PubMed  Google Scholar 

  4. Sevez G, Pozzo J-L (2011) Toward multi-addressable molecular systems: efficient synthesis and photochromic performance of unsymmetrical bisthienylethenes. Dyes Pigm 89:246–253. https://doi.org/10.1016/j.dyepig.2010.03.018

    Article  CAS  Google Scholar 

  5. Shinde AT, Zangade SB, Chavan SB, Vibhute AY, Nalwar YS, Vibhute YB (2010) A practical iodination of aromatic compounds by using iodine and iodic acid. Synth Commun 40(23):3506–3513. https://doi.org/10.1080/00397910903457332

    Article  CAS  Google Scholar 

  6. Zolfigol MA, Khazaei A, Kolvari E, Koukabi N, Soltani H, Behjunia M, Khakyzadeh V (2009) HIO3/KI: a new combination reagent for iodination of aromatic amines and trimethylsilylation of alcohols and phenols through insitu generation of iodine under mild conditions. Arkivoc 13:200–210

    Google Scholar 

  7. De PK, Neckers DC (2012) Sulfur containing stable unsubstituted heptacene analogs. Org Lett 14(1):78–81. https://doi.org/10.1021/ol2028724

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Tang J, Zhao Y, Jiang R, Wang T, Gao G, You J (2017) Cu-catalyzed controllable C–H mono-/di-/triarylations of imidazolium salts for ionic functional materials. Chem Commun 53(24):3489–3492. https://doi.org/10.1039/C7CC01076A

    Article  CAS  Google Scholar 

  9. O’Connor MJ, Haley MM (2008) Synthesis and properties of butyl-capped dehydrothieno[14]annulenes and their conversion into terthiophenes. Org Lett 10(18):3973–3976. https://doi.org/10.1021/ol801451x

    Article  CAS  PubMed  Google Scholar 

  10. Youm SG, Hwang E, Chavez CA, Li X, Chatterjee S, Lusker KL, Lu L, Strzalka J, Ankner JF, Losovyj Y, Garno JC, Nesterov EE (2016) Polythiophene thin films by surface-initiated polymerization: mechanistic and structural studies. Chem Mater 28(13):4787–4804. https://doi.org/10.1021/acs.chemmater.6b01957

    Article  CAS  Google Scholar 

  11. Díaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat Commun 6:6036. https://doi.org/10.1038/ncomms7036

    Article  CAS  PubMed  Google Scholar 

  12. Díaz SA, Menéndez GO, Etchehon MH, Giordano L, Jovin TM, Jares-Erijman EA (2011) Photoswitchable water-soluble quantum dots: pcFRET based on amphiphilic photochromic polymer coating. ACS Nano 5(4):2795–2805. https://doi.org/10.1021/nn103243c

    Article  CAS  PubMed  Google Scholar 

  13. Fukaminato T, Hirose T, Doi T, Hazama M, Matsuda K, Irie M (2014) Molecular design strategy toward diarylethenes that photoswitch with visible light. J Am Chem Soc 136(49):17145–17154. https://doi.org/10.1021/ja5090749

    Article  CAS  PubMed  Google Scholar 

  14. Nakashima T, Fujii R, Kawai T (2011) Regulation of folding and photochromic reactivity of terarylenes through a host–guest interaction. Chem A Eur J 17(39):10951–10957. https://doi.org/10.1002/chem.201101495

    Article  CAS  Google Scholar 

  15. Patel DG, Walton IM, Cox JM, Gleason CJ, Butzer DR, Benedict JB (2014) Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework. Chem Commun 50(20):2653–2656. https://doi.org/10.1039/C3CC49666J

    Article  CAS  Google Scholar 

  16. Yam VWW, Ko CC, Wu LX, Wong KMC, Cheung KK (2000) Synthesis, crystal structure, and photochromic properties of rhenium (I) complexes containing the spironathoxazine moiety. Organometallics 19(10):1820–1822

    Article  CAS  Google Scholar 

  17. Buckup T, Sarter C, Volpp H-R, Jäschke A, Motzkus M (2015) Ultrafast time-resolved spectroscopy of diarylethene-based photoswitchable deoxyuridine nucleosides. J Phys Chem Lett 6(23):4717–4721. https://doi.org/10.1021/acs.jpclett.5b01949

    Article  CAS  PubMed  Google Scholar 

  18. Yagai S, Ohta K, Gushiken M, Iwai K, Asano A, Seki S, Kikkawa Y, Morimoto M, Kitamura A, Karatsu T (2012) Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular Co-polymers composed of diarylethenes and oligothiophenes. Chem A Eur J 18(8):2244–2253. https://doi.org/10.1002/chem.201103465

    Article  CAS  Google Scholar 

  19. Dolomanov OVB, Gildea LJ, Howard RJ, Puschmann JAK, H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  20. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64(1):112–122

    Article  CAS  Google Scholar 

  21. Takahashi K, Ito I, Matsuki Y (1967) Proton magnetic resonance spectra of methyliodothiophenes. Bull Chem Soc Jpn 40(3):605–607. https://doi.org/10.1246/bcsj.40.605

    Article  CAS  Google Scholar 

  22. Steinkopf W, Hanske W (1937) Studien in der thiophenreihe. XXXIV. Über die Jodderivate des 2-Thiotolens. Justus Liebigs Annalen der Chemie 527(1):264–271. https://doi.org/10.1002/jlac.19375270118

    Article  CAS  Google Scholar 

  23. Gronowitz S, Svensson A (1986) On the ring-opening of some 3-lithiobithienyls and 3′-lithio-α-terthienyls. Isr J Chem 27(1):25–28. https://doi.org/10.1002/ijch.198600004

    Article  CAS  Google Scholar 

  24. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by x-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  25. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116(4):2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogel L, Wonner P, Huber SM (2018) Chalcogen bonding: an overview. Angew Chem Int Ed. https://doi.org/10.1002/anie.201809432 In press.

    Article  Google Scholar 

  27. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  28. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13(2):291–296. https://doi.org/10.1007/s00894-006-0130-2

    Article  CAS  PubMed  Google Scholar 

  29. Noh J, Jung S, Koo DG, Kim G, Choi KS, Park J, Shin TJ, Yang C, Park J (2018) Thienoisoindigo-based semiconductor nanowires assembled with 2-bromobenzaldehyde via both halogen and chalcogen bonding. Sci Rep 8(1):14448. https://doi.org/10.1038/s41598-018-32486-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rybarczyk-Pirek AJ, Chęcińska L, Małecka M, Wojtulewski S (2013) Intermolecular interactions of trichloromethyl group in the crystal state, the case of 2-trichloromethyl-3H-4-quinazoline polymorphs and 1-methyl-2-trichloroacetylpyrrole–hirshfeld surface analysis of chlorine halogen bonding. Cryst Growth Des 13(9):3913–3924. https://doi.org/10.1021/cg400584w

    Article  CAS  Google Scholar 

  31. Metrangolo P, Resnati G, Pilati T, Liantonio R, Meyer F (2007) Engineering functional materials by halogen bonding. J Polym Sci Part A: Polym Chem 45(1):1–15. https://doi.org/10.1002/pola.21725

    Article  CAS  Google Scholar 

  32. Guo P, Paul A, Kumar A, Farahat AA, Kumar D, Wang S, Boykin DW, Wilson WD (2016) The thiophene “Sigma-Hole” as a concept for preorganized, specific recognition of G⋅C base pairs in the DNA minor groove. Chem A Eur J 22(43):15404–15412. https://doi.org/10.1002/chem.201603422

    Article  CAS  Google Scholar 

  33. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56(4):1363–1388. https://doi.org/10.1021/jm3012068

    Article  CAS  PubMed  Google Scholar 

  34. Cody V, Murray-Rust P (1984) Iodine⋯X(O, N, S) intermolecular contacts: models of thyroid hormone protein binding interactions using information from the cambridge crystallographic data files. J Mol Struct 112(3):189–199. https://doi.org/10.1016/0022-2860(84)85061-9

    Article  CAS  Google Scholar 

  35. Peluso P, Mamane V, Aubert E, Dessì A, Dallocchio R, Dore A, Pale P, Cossu S (2016) Insights into halogen bond-driven enantioseparations. J Chromatogr A 1467:228–238. https://doi.org/10.1016/j.chroma.2016.06.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DGP thanks Penn State Hazleton for funding in the form of a Research Development Grant. JBB acknowledges support from the National Science Foundation under Grant No. DMR-1455039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh G. Patel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1575 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D.G., Sylvester, E.D., LeValley, N.R. et al. The Structure and Characterization of 3,4,5-Triiodo-2-Methylthiophene: An Unexpected Iodination Product of 2-Methylthiophene. J Chem Crystallogr 49, 206–212 (2019). https://doi.org/10.1007/s10870-019-00770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00770-z

Keywords

Navigation