Skip to main content
Log in

Steady States Analysis of a Nonlinear Age-Structured Tumor Cell Population Model with Quiescence and Bidirectional Transition

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A nonlinear age-structured tumor cell population model with quiescence and bidirectional transition is presented and studied. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The bidirectional transition between proliferating cells and quiescent cells is considered. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Busenberg, S., Hadeler, K.P.: Demography and epidemics. Math. Biosci. 101, 63–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Inaba, H.: Age-Structured Population Dynamics in Demograhpy and Epidemiology. Springer, Singapore (2017)

    Book  MATH  Google Scholar 

  3. Zou, L., Ruan, S., Zhang, W.: An age-structured model for the transmission dynamics of Hepatitis B. SIAM J. Appl. Math. 70, 3121–3139 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Inaba, H.: Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J. Math. Biol. 54, 101–146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busenberg, S.N., Iannelli, M., Thieme, H.R.: Global behavior of an age-structured epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iannelli, M., Manfredi, P.: Demographic changes and immigration in age-structured epidemic models. Math. Popul. Stud. 14(3), 169–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iannelli, M., Milner, F.A., Pugliese, A.: Analytical and numerical results for the age-structured SIS epidemic model with mixed inter-intracohort transmission. SIAM J. Math. Anal. 23(3), 662–688 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zaman, G., Khan, A.: Dynamical aspects of an age-structured SIR endemic model. Comput. Math. Appl. 72(6), 1690–1702 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, Y., Ruan, S., Xiao, D.: Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Math. Biosci. Eng. 12, 859–877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Browne, C.J., Pilyugin, S.S.: Global analysis of age-structured within-host virus model. Discrete Contin. Dyn. Syst., Ser. B 18(8), 1999–2017 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Wang, J., Lang, J., Zou, X.: Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission. Nonlinear Anal., Real World Appl. 34, 75–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ayati, B.P., Webb, G.F., Anderson, R.A.: Computational methods and results for structured multiscale models of tumor invasion. SIAM Multiscale Model. Simul. 5(1), 1–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyllenberg, M., Webb, G.F.: Age-size structure in populations with quiescence. Math. Biosci. 86, 67–95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gyllenberg, M., Webb, G.F.: Asynchronous exponential growth of semigroups of nonlinear operators. J. Math. Anal. Appl. 167, 443–467 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arino, O., Sánchez, E., Webb, G.F.: Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence. J. Math. Anal. Appl. 215, 499–513 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyson, J., Villella-Bressan, R., Webb, G.F.: Asynchronous exponential growth in an age structured population of proliferating and quiescent cells. Math. Biosci. 177, 73–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brikci, F.B., Clairambault, J., Ribba, B., Perthame, B.: An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 57(1), 91–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Akimenko, V., Anguelov, R.: Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay. J. Biol. Dyn. 11(1), 75–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gabriel, P., Garbett, S.P., Quaranta, V., Tyson, D.R., Webb, G.F.: The contribution of age structure to cell population responses to targeted therapeutics. J. Theor. Biol. 311(21), 19–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7), 1109–1140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thieme, H.R., Castillo-Chavez, C.: How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53(5), 1447–1479 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Inaba, H.: Endemic threshold results in an age-duration-structured population model for HIV infection. Math. Biosci. 201, 15–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurtin, M.E., Maccamy, R.C.: Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54(3), 281–300 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Arino, O., Kimmel, M.: Asymptotic analysis of a cell-cycle model based on unequal division. SIAM J. Appl. Math. 47, 128–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Z., Chen, J., Pang, J., Bi, P., Ruan, S.: Modeling and analysis of a nonlinear age-structured model for tumor cell populations with quiescence. J. Nonlinear Sci. 28, 1763–1791 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Skipper, H.E.: Kinetics of mammary tumor cell growth and implications for therapy. Cancer 28, 1479–1499 (1971)

    Article  Google Scholar 

  27. Tyson, D.R., Garbett, S.P., Frick, P.L., Quaranta, V.: Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nat. Methods 9(9), 923–928 (2012)

    Article  Google Scholar 

  28. Inaba, H.: Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete Contin. Dyn. Syst., Ser. B 6(1), 69–96 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Cherif, A., Dyson, J., Maini, P.K., Gupta, S.: An age-structured multi-strain epidemic model for antigenically diverse infections diseases: a multi-locus framework. Nonlinear Anal., Real World Appl. 34, 275–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Spinelli, L., Torricelli, A., Ubezio, P., Basse, B.: Modelling the balance between quiescence and cell death in normal and tumour cell populations. Math. Biosci. 202, 349–370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (11401060,11801047), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0412), the Fundamental Research Funds for the Central Universities (ZYGX2016J131, ZYGX2016J138), the Program of Chongqing Innovation Team Project in University (CXTDX201601022) and Chongqing Municipal Education Commission (KJ1600522, KJ1705136, KJQN201900707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Guo, C., Yang, J. et al. Steady States Analysis of a Nonlinear Age-Structured Tumor Cell Population Model with Quiescence and Bidirectional Transition. Acta Appl Math 169, 455–474 (2020). https://doi.org/10.1007/s10440-019-00306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-019-00306-9

Keywords

Navigation