Skip to main content
Log in

PCAPooL: unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Human face is a widely used biometric modality for verification and revealing the identity of a person. In spite of a great deal of research on face recognition, it still is a challenging issue. Recently, the outstanding performance of deep learning has attracted a good deal of research interest for face recognition. In comparison with hand-engineered features, learning-based face features have proven their superiority in encoding discriminative information. Inspired by deep learning, we introduce a simple and efficient unsupervised feature learning scheme for face recognition. This scheme employs principle component analysis (PCA), local binary pattern (LBP), and pyramid pooling. Following the architecture of a convolutional neural network, the proposed scheme contains three types of layers: convolutional, nonlinear, and pooling layers. PCA is used to learn a filter bank for the convolutional layer. This is followed by LBP operator that encodes the local texture and adds nonlinearity to the feature maps of convolutional layer, which are then pooled using spatial pyramid pooling. To corroborate the effectiveness of the scheme (which we call as PCAPool), extensive experiments were performed on challenging benchmark databases: FERET, Yale, Extended Yale B, AR, and multi-PIE. The comparison reveals that PCAPool performs better than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  2. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In IEEE Computer Society conference on computer vision and pattern recognition, 1991. Proceedings CVPR’91, pp 586–591

  3. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process Publ IEEE Signal Process Soc 11(4):467–476

    Google Scholar 

  4. Lei Z, Li SZ, Chu R, Zhu X (2007) Face recognition with local gabor textons. In: Lee S-W, Li SZ (eds) Advances in biometrics: international conference, ICB 2007, Seoul, Korea, August 27–29, 2007. Proceedings. Springer, Berlin, pp 49–57

  5. Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  6. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  7. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  8. Deng W, Hu J, Guo J (2013) In defense of sparsity based face recognition. In: 2013 IEEE conference on computer vision and pattern recognition (CVPR), pp 399–406

  9. Yang M, Zhang L, Shiu SCK, Zhang D (2013) Gabor feature based robust representation and classification for face recognition with Gabor occlusion dictionary. Pattern Recognit 46(7):1865–1878

    Article  Google Scholar 

  10. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2169–2178

  11. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1794–1801

  12. Shen F, Shen C, Zhou X, Yang Y, Shen HT (2016) Face image classification by pooling raw features. Pattern Recognit 54:94–103

    Article  Google Scholar 

  13. Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th international conference on computer vision, pp 2146–2153

  14. Kavukcuoglu K, Sermanet P, Boureau Y, Gregor K, Mathieu M, Cun YL (2010) Learning convolutional feature hierarchies for visual recognition. Presented at the Advances in Neural Information Processing Systems, 2010, pp 1090–1098

  15. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision—ECCV 2014. Springer, Berlin, pp 818–833

    Chapter  Google Scholar 

  16. Zhu Z, Luo P, Wang X, Tang X (2013) Deep learning identity-preserving face space. In: Proceedings of the 2013 IEEE international conference on computer vision, Washington, DC, USA, pp 113–120

  17. Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition, Washington, DC, USA, pp 1891–1898

  18. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  Google Scholar 

  19. Zhang G, Huang X, Li SZ, Wang Y, Wu X (2004) Boosting local binary pattern (LBP)-based face recognition. In: Li SZ, Lai J, Tan T, Feng G, Wang Y (eds) Advances in biometric person authentication. Springer, Berlin, pp 179–186

    Chapter  Google Scholar 

  20. Jabid T, Kabir MH, Chae O (2010) Gender classification using local directional pattern (LDP). In: Proceedings of the 2010 20th international conference on pattern recognition, Washington, DC, USA, pp 2162–2165

  21. Gong Y, Lazebnik S (2011) Comparing data-dependent and data-independent embeddings for classification and ranking of internet images. In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, Washington, DC, USA, pp 2633–2640

  22. Phillips PJ, Wechsler H, Huang J, Rauss PJ (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  23. Martinez A, Benavente R. The AR face database. CVC, Technical Report

  24. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23(6):643–660

    Article  Google Scholar 

  25. Gross R, Matthews I, Cohn J, Kanade T, Baker S (2008) Multi-PIE. In: 8th IEEE international conference on automatic face gesture recognition, 2008. FG’08, pp 1–8

  26. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of Gabor phase patterns (HGPP): a novel object representation approach for face recognition. IEEE Trans. Image Process. 16(1):57–68

    Article  MathSciNet  Google Scholar 

  27. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3360–3367

  28. Vu N-S, Caplier A (2012) Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE TIP 21(3):1352–1368

    MathSciNet  MATH  Google Scholar 

  29. Lu J, Tan Y-P, Wang G (2013) Discriminative multi-manifold analysis for face recognition from a single training sample per person. IEEE TPAMI 35(1):39–51

    Article  Google Scholar 

  30. Tan X, Triggs B (2007) Fusing Gabor and LBP feature sets for kernel-based face recognition. In: International workshop on analysis and modeling of faces and gestures, pp 235–249

  31. Shi Q, Eriksson A, vanden Hengel A, Shen C (2011) Is face recognition really a compressive sensing problem? In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 553–560

  32. Kumar R, Banerjee A, Vemuri BC, Pfister H (2012) Trainable convolution filters and their application to face recognition. IEEE Trans Pattern Anal Mach Intell 34(7):1423–1436

    Article  Google Scholar 

  33. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  34. He X, Yan S, Hu Y, Niyogi P, Zhang H-J (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  35. Cai D, He X, Han J, Zhang H-J (2006) Orthogonal Laplacian faces for face recognition. IEEE Trans Image Process 15(11):3608–3614

    Article  Google Scholar 

  36. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE TIP 19(6):1635–1650

    MathSciNet  MATH  Google Scholar 

  37. Yang M, Zhang L, Yang J, Zhang (2011) Robust sparse coding for face recognition. In: Proceedings of IEEE international conference on computer vision and pattern recognition, pp 625–632

  38. Tao Q-C, Liu Z-M, Bebis G, Hussain M (2015) Face recognition using a novel image representation scheme and multi-scale local features. Int J Biom 7(3):191–212

    Google Scholar 

  39. Ojala T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia for funding this work through the Research Group No. RGP-1439-067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmadi, A., Hussain, M., Aboalsamh, H.A. et al. PCAPooL: unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling. Pattern Anal Applic 23, 673–682 (2020). https://doi.org/10.1007/s10044-019-00818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-019-00818-y

Keywords

Navigation