Skip to main content
Log in

A new indicator-based many-objective ant colony optimizer for continuous search spaces

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel multi-objective ant colony optimizer (called iMOACO\(_{\mathbb {R}}\)) for continuous search spaces, which is based on ACO\(_{\mathbb {R}}\) and the R2 performance indicator. iMOACO\(_{\mathbb {R}}\) is the first multi-objective ant colony optimizer (MOACO) specifically designed to tackle continuous many-objective optimization problems (i.e., multi-objective optimization problems having four or more objectives). Our proposed iMOACO\(_{\mathbb {R}}\) is compared to three state-of-the-art multi-objective evolutionary algorithms (NSGA-III, MOEA/D and SMS-EMOA) and a MOACO algorithm called MOACO\(_{\mathbb {R}}\) using standard test problems and performance indicators taken from the specialized literature. Our experimental results indicate that iMOACO\(_{\mathbb {R}}\) is very competitive with respect to NSGA-III and MOEA/D and it is able to outperform SMS-EMOA and MOACO\(_{\mathbb {R}}\) in most of the test problems adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Without loss of generality, we will assume only minimization problems.

  2. The source code and the complete study of iMOACO\(_{\mathbb {R}}\) are available at: http://computacion.cs.cinvestav.mx/~jfalcon/iMOACOR/imoacor.html.

  3. We used the implementation from 2007 for continuous search spaces: http://dces.essex.ac.uk/staff/zhang/webofmoead.htm.

  4. We used the implementation available at: http://web.ntnu.edu.tw/~tcchiang/publicstions/nsga3cpp/nsga3cpp.htm.

  5. The source code was provided by its author, Abel García-Nájera.

  6. According to Deb (2001), the parallel coordinates plot (also called value path plot) is a graphical method to show the objective values of high-dimensional nondominated fronts. The horizontal axis marks the identity of the objective function and, thus, must be ticked only at integers starting from 1 to m and a bar is put in each tick. The vertical axis will mark the objective function values. The plot provides the following information:

    1. 1.

      Qualitative assessment of the spread of the obtained solutions. An algorithm which spreads its solutions over the entire objective value axis is considered to be good at finding diverse solutions.

    2. 2.

      The extent to which the cross-lines “zig-zag” shows the trade-off among the objective functions captured by the obtained nondominated solutions. An algorithm having a large change of slope between two objective function bars is considered to be good in terms of finding good trade-off nondominated solutions.

  7. The election of these values is based on the analysis of diversification versus intensification of the search, made by Socha and Dorigo (2008) for ACO\(_{\mathbb {R}}\).

References

  • Angus, D. (2007a). Crowding Population-based ant colony optimization for the multi-objective travelling salesman problem. In Proceedings of the 2007 IEEE symposium on computational intelligence in multicriteria decision making (MCDM’2007) (pp. 333–340). Honolulu, HI: IEEE Press.

  • Angus, D. (2007b). Population-based ant colony optimisation for multi-objective function optimisation. In M. Randall, H. A. Abbass, & J. Wiles (Eds.), Progress in artificial life, third australian conference (ACAL’2007), lecture notes in computer science (vol. 4828, pp. 232–244). Gold Coast: Springer.

  • Angus, D., & Woodward, C. (2009). Multiple objective ant colony optimisation. Swarm Intelligence, 3(1), 69–85.

    Article  Google Scholar 

  • Anton, H. (2010). Elementary linear algebra. New York: Wiley.

    Google Scholar 

  • Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2007). The traveling salesman problem: A computational study. Princeton series in applied mathematics. Princeton, NJ: Princeton University Press.

  • Bader, J., & Zitzler, E. (2011). HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19(1), 45–76.

    Article  Google Scholar 

  • Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 181(3), 1653–1669.

    Article  MATH  Google Scholar 

  • Bilchev, G., & Parmee, I. C. (1995). The ant colony metaphor for searching continuous design spaces. In Selected papers from AISB workshop on evolutionary computing (pp. 25–39). London: Springer.

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Box, G. E. P., & Müller, M. E. (1958). A note on the generation of random normal deviates. The Annals of Mathematical Statistics, 29(2), 610–611.

    Article  MATH  Google Scholar 

  • Brockhoff, D., Friedrich, T., & Neumann, F. (2008). Analyzing hypervolume indicator based algorithms. In G. Rudolph, T. Jansen, S. Lucas, C. Poloni, & N. Beume (Eds.), Parallel problem solving from nature—PPSN X, lecture notes in computer science (vol. 5199, pp. 651–660). Dortmund: Springer.

  • Brockhoff, D., Wagner, T., & Trautmann, H. (2012). On the properties of the \(R2\) indicator. In 2012 Genetic and evolutionary computation conference (GECCO’2012) (pp. 465–472). Philadelphia: ACM Press. ISBN: 978-1-4503-1177-9.

  • Brockhoff, D., Wagner, T., & Trautmann, H. (2015). R2 indicator-based multiobjective search. Evolutionary Computation, 23(3), 369–395.

    Article  Google Scholar 

  • Chasalow, S. D., & Brand, R. J. (1995). Algorithm as 299: Generation of simplex lattice points. Journal of the Royal Statistical Society Series C (Applied Statistics), 44(4), 534–545.

    MATH  Google Scholar 

  • Chen, L., Shen, J., Qin, L., & Chen, H. (2003). An improved ant colony algorithm in continuous optimization. Journal of Systems Science and Systems Engineering, 12(2), 224–235.

    Article  Google Scholar 

  • Coello Coello, C. A., & Cruz Cortés, N. (2005). Solving multiobjective optimization problems using an artificial immune system. Genetic Programming and Evolvable Machines, 6(2), 163–190.

    Article  Google Scholar 

  • Coello Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (2nd ed.). New York: Springer. ISBN 978-0-387-33254-3.

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.

    MATH  Google Scholar 

  • Deb, K., & Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Complex Systems, 9(3), 115–148.

    MathSciNet  MATH  Google Scholar 

  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, & H.-P. Schwefel (Eds.), Proceedings of the parallel problem solving from nature VI conference, lecture notes in computer science No. 1917 (pp. 849–858). Paris: Springer.

  • Deb, K., & Jain, H. (2014). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577–601.

    Article  Google Scholar 

  • Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective optimization test problems. In Congress on evolutionary computation (CEC’2002) (vol. 1, pp. 825–830). Piscataway, NJ: IEEE Service Center.

  • Dorigo, M. (1992). Optimization, learning and natural algorithms (in Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy.

  • Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Science, 344(2), 243–278.

    Article  MathSciNet  MATH  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics-Part B, 26(1), 29–41.

    Article  Google Scholar 

  • Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Michigan: Bradford Company.

    MATH  Google Scholar 

  • Dréo, J., & Siarry, P. (2004). Continuous interacting ant colony algorithm based on dense heterarchy. Future Generation Computer Systems, 20(5), 841–856.

    Article  Google Scholar 

  • Falcón-Cardona, J., & Coello Coello, C. A. (2016). iMOACO\(_{\mathbb{R}}\): A new indicator-based multi-objective ant colony optimization algorithm for continuous search spaces. In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, & B. Paechter (Eds.), Parallel problem solving from nature—PPSN XIV, 14th international conference, lecture notes in computer science (vol. 9921,pp. 389–398). Edinburgh: Springer. ISBN 978-3-319-45822-9.

  • Garcia-Najera, A., & Bullinaria, J. A. (2007). Extending ACO\(_R\) to solve multi-objective problems. In G. M. Coghill (Ed.), Proceedings of the UK workshop on computational intelligence (UKCI 2007). London: Imperial College.

  • Hernández Gómez, R., & Coello Coello, C. A. (2013). MOMBI: A new metaheuristic for many-objective optimization based on the \(R2\) indicator. In 2013 IEEE congress on evolutionary computation (CEC’2013) (pp. 2488–2495). Cancún: IEEE Press. ISBN 978-1-4799-0454-9.

  • Hernández Gómez, R., & Coello Coello, C. A. (2015). Improved metaheuristic based on the \(R2\) indicator for many-objective optimization. In 2015 Genetic and evolutionary computation conference (GECCO 2015) (pp. 679–686). Madrid: ACM Press. ISBN 978-1-4503-3472-3.

  • Huband, S., Barone, L., While, L., & Hingston, P. (2005). A scalable multi-objective test problem toolkit. In C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Third international conference evolutionary multi-criterion optimization (EMO 2005), lecture notes in computer science (vol. 3410, pp. 280–295). Guanajuato: Springer.

  • Huband, S., Hingston, P., Barone, L., & While, L. (2006). A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation, 10(5), 477–506.

    Article  MATH  Google Scholar 

  • Ishibuchi, H., Masuda, H., Tanigaki, Y., & Nojima, Y. (2014). Difficulties in specifying reference points to calculate the inverted generational distance for many-objective optimization problems. In 2014 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM’2014) (pp. 170–177). Orlando, FL: IEEE Press. ISBN 978-1-4799-4467-5.

  • Ishibuchi, H., Masuda, H., Tanigaki, Y., & Nojima, Y. (2015). Modified distance calculation in generational distance and inverted generational distance. In A. Gaspar-Cunha, C. H. Antunes, & C. Coello Coello (Eds.), 8th International conference evolutionary multi-criterion optimization (EMO 2015), lecture notes in computer science (vol. 9019, pp. 110–125). Guimarães: Springer.

  • Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective optimization: A short review. In 2008 Congress on evolutionary computation (CEC’2008) (pp. 2424–2431). Hong Kong: IEEE Service Center.

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys, 31(3), 264–323.

    Article  Google Scholar 

  • Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Congress on evolutionary computation (CEC’2002) (vol. 1, pp. 711–716). Piscataway, NJ: IEEE Service Center.

  • Knowles, J., & Corne, D. (2007). Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, & T. Murata (Eds.), Evolutionary multi-criterion optimization, 4th international conference, EMO 2007, lecture notes in computer science (vol. 4403, pp. 757–771). Matshushima: Springer.

  • Kong, M., & Tian, P. (2006). A direct application of ant colony optimization to function optimization problem in continuous domain. In Proceedings of the 5th international conference on ant colony optimization and swarm intelligence (ANTS’06) (pp. 324–331). Berlin: Springer.

  • Leguizamón, G., & Coello Coello, C. A. (2010). An alternative aco\(_{\mathbb{R}}\) algorithm for continuous optimization problems. In Proceedings of the 7th international conference on swarm intelligence (ANTS’10) (pp. 48–59). Berlin: Springer.

  • Leguizamón, G., & Coello Coello, C. A. (2011). Multi-objective ant colony optimization: A taxonomy and review of approaches. In S. Dehuri, S. Ghosh, & S. B. Cho, (Eds.), Integration of swarm intelligence and artificial neural network, chapter 3 (pp. 67–94). Singapore: World Scientific. ISBN 978-981-4280-14-3.

  • Liao, T., Montes de Oca, M. A., Aydin, D., Stützle, T., & Dorigo, M. (2011). An incremental ant colony algorithm with local search for continuous optimization. In Proceedings of the 13th annual conference on genetic and evolutionary computation (GECCO’11) (pp. 125–132). New York, NY: ACM.

  • Lopez-Ibanez, M., & Stützle, T. (2012a). The automatic design of multiobjective ant colony optimization algorithms. IEEE Transactions on Evolutionary Computation, 16(6), 861–875.

  • Lopez-Ibanez, M., & Stützle, T. (2012b). An experimental analysis of design choices of multi-objective ant colony optimization algorithms. Swarm Intelligence, 6(3), 207–232.

  • Miettinen, K. (1999). Nonlinear multiobjective optimization. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Phan, D. H., & Suzuki, J. (2013). R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization. In 2013 IEEE congress on evolutionary computation (CEC’2013) (pp. 1836–1845). Cancún: IEEE Press. ISBN 978-1-4799-0454-9.

  • Scheffe, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society Series B (Statistical Methodology), 20(2), 344–360.

    MathSciNet  MATH  Google Scholar 

  • Scheffe, H. (1963). The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society Series B (Statistical Methodology), 25(2), 235–263.

    MathSciNet  MATH  Google Scholar 

  • Scheffe, H. (1999). The analysis of variance. New York: Wiley.

    MATH  Google Scholar 

  • Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research, 185(3), 1155–1173.

    Article  MathSciNet  MATH  Google Scholar 

  • Stützle, T., & Hoos, H. H. (2000). Max-min ant system. Future Generation Computer Systems, 16(9), 889–914.

    Article  MATH  Google Scholar 

  • While, L., Bradstreet, L., & Barone, L. (2012). A fast way of calculating exact hypervolumes. IEEE Transactions on Evolutionary Computation, 16(1), 86–95.

    Article  Google Scholar 

  • Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

    Article  MathSciNet  Google Scholar 

  • Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from CONACyT and CINVESTAV-IPN to pursue graduate studies in Computer Science. The second author gratefully acknowledges support from CONACyT Project No. 221551. Both authors thank the Referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Guillermo Falcón-Cardona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falcón-Cardona, J.G., Coello Coello, C.A. A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intell 11, 71–100 (2017). https://doi.org/10.1007/s11721-017-0133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-017-0133-x

Keywords

Navigation