Skip to main content
Log in

Cooling Effects of Cold Mist Jet with Transient Heat Transfer on High-Speed Cutting of Titanium Alloy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

High cutting temperature will lead to a short tool life and a poor machining quality during titanium alloy machining. High efficiency cooling methods are always required to reduce the cutting temperature. In this paper, heat transfer experimental platform was set up and one-dimension heat transfer model was established to get critical heat flux (CHF) used to evaluate the cooling capacity of the cooling methods. The effect of cold mist jet (CMJ) was evaluated by transient heat transfer tests and titanium alloys cutting experiments, comparing with cold air jet, flood cooling and minimum quantity lubricant. The experimental results revealed that CMJ with a high CHF has a stronger cooling capacity than other cooling methods and has greatly reduced the cutting temperature in high-speed cutting of titanium alloys. And tool life and surface quality have been both improved with CMJ. This paper offered a way for evaluating the cooling effects of different cooling methods with heat transfer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CHF:

Critical heat flux

CMJ:

Cold mist jet

c p :

Specific heat (J/(kg °C))

l :

Length of the specimen (mm)

m :

Total time intervals

MQL:

Minimum quantity lubricant

q :

Heat flux (W/mm2)

q CHF :

Critical heat flux (W/mm2)

TC4:

Ti–6Al–4V

TC9:

Ti–6.5Al–3.5Mo–2.5Sn–0.3Si

α :

Thermal diffusivity (m2/s)

λ :

Thermal conductivity (W/m °C))

λ s :

Tool cutting edge inclination (°)

ρ s :

Density (kg/m3)

τ :

Cooling cycle (s)

θ :

Temperature (°C)

θ 0 :

Initial average temperature (°C)

ϕ :

Tool diameter (mm)

δq(0):

Initial heat flux (W/mm2)

References

  1. Leyens, C., & Peters, M. (2003). Titanium and titanium alloys: Fundamentals and applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

    Book  Google Scholar 

  2. Khanna, N., & Sangwan, K. S. (2013). Machinability analysis of heat treated Ti64, Ti54M and Ti10. 2.3 titanium alloys. International Journal of Precision Engineering and Manufacturing,14(5), 719–724.

    Article  Google Scholar 

  3. Park, K. H., Yang, G. D., Lee, M. G., Jeong, H., Lee, S. W., & Lee, D. Y. (2014). Eco-friendly face milling of titanium alloy. International Journal of Precision Engineering and Manufacturing,15(6), 1159–1164.

    Article  Google Scholar 

  4. Klocke, F., & Einesblatter, G. (1997). Dry cutting. CIRP Annals-Manufacturing Technology,46(2), 519–526.

    Article  Google Scholar 

  5. Liu, J. Y., Han, R. D., & Sun, Y. F. (2005). Research on experiments and action mechanism with water vapor as coolant and lubricant in green cutting. International Journal of Machine Tools and Manufacture,45(6), 687–694.

    Article  Google Scholar 

  6. Zailani, Z. A., & Mativenga, P. T. (2016). Effects of chilled air on machinability of NiTi, shape memory alloy. Procedia CIRP,45, 207–210.

    Article  Google Scholar 

  7. Su, Y., He, N., Li, L., Iqbal, A., Xiao, M. H., Xu, S., et al. (2007). Refrigerated cooling air cutting of difficult-to-cut materials. International Journal of Machine Tools and Manufacture,47(6), 927–933.

    Article  Google Scholar 

  8. Sartori, S., Ghiotti, A., & Bruschi, S. (2017). Temperature effects on the Ti6Al4V machinability using cooled gaseous nitrogen in semi-finishing turning. Journal of Manufacturing Processes,30, 187–194.

    Article  Google Scholar 

  9. Venugopal, K. A., Paul, S., & Chattopadhyay, A. B. (2007). Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling. Wear,262(9), 1071–1078.

    Article  Google Scholar 

  10. Mia, M., & Dhar, N. R. (2017). Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy. Journal of Materials Processing Technology,252, 688–696.

    Article  Google Scholar 

  11. Ezugwu, E. O., Bonney, J., Da Silva, R. B., & Cakir, O. (2007). Surface integrity of finished turned Ti-6Al-4V alloy with PCD tools using conventional and high pressure coolant supplies. International Journal of Machine Tools and Manufacture,47(6), 884–891.

    Article  Google Scholar 

  12. Jang, D. Y., Jung, J., & Seok, J. (2016). Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing-Green Technology,3(1), 5–12.

    Article  Google Scholar 

  13. Pereira, O., Rodríguez, A., Barreiro, J., Fernández-Abia, A. I., & de Lacalle, L. N. L. (2017). Nozzle design for combined use of MQL and cryogenic gas in machining. International Journal of Precision Engineering and Manufacturing-Green Technology,4(1), 87–95.

    Article  Google Scholar 

  14. Lawal, S. A., Choudhury, I. A., & Nukman, Y. (2013). A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. Journal of Cleaner Production,41(1), 210–221.

    Article  Google Scholar 

  15. Lee, P. H., Sang, W. L., Lim, S. H., et al. (2015). A study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing,16(9), 1899–1909.

    Article  Google Scholar 

  16. Huang, S., Lv, T., Wang, M., et al. (2018). Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. International Journal of Precision Engineering and Manufacturing-Green Technology,5(2), 317–326.

    Article  Google Scholar 

  17. Marksberry, P. W., & Jawahir, I. S. (2008). A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing. International Journal of Machine Tools and Manufacture,48, 878–886.

    Article  Google Scholar 

  18. Gnanadurai, R. R., & Varadarajan, A. S. (2014). Investigation on the effect of an auxiliary pulsing jet of water at the top side of chip during hard turning of AISI 4340 steel with minimal fluid application. International Journal of Precision Engineering and Manufacturing,15(7), 1435–1441.

    Article  Google Scholar 

  19. Goyal, A., Dhiman, S., Kumar, S., & Sharma, R. (2014). A study of experimental temperature measuring techniques used in metal cutting. Jordan Journal of Mechanical and Industrial Engineering,8(2), 82–93.

    Google Scholar 

  20. Nedić, B. P., & Erić, M. D. (2014). Cutting temperature measurement and material machinability. Thermal Science,18, 259–268.

    Article  Google Scholar 

  21. Davies, M. A., Ueda, T., M’Saoubi, R., Mullany, B., & Cooke, A. L. (2007). On the measurement of temperature in material removal processes. CIRP Annals-Manufacturing Technology,56(2), 581–604.

    Article  Google Scholar 

  22. Attia, M. H., & Kops, L. (1986). Distortion in thermal field around inserted thermocouples in experimental interfacial studies. Journal of Manufacturing Science and Engineering,108(4), 241–246.

    Google Scholar 

  23. Carvalho, S. R., Lima e Silva, S. M. M., Machado, A. R., & Guimarães, G. (2006). Temperature determination at the chip–tool interface using an inverse thermal model considering the tool and tool holder. Journal of Materials Processing Technology,179(1), 97–104.

    Article  Google Scholar 

  24. Le Coz, G., Marinescu, M., Devillez, A., Dudzinski, D., & Velnom, L. (2012). Measuring temperature of rotating cutting tools: Application to MQL drilling and dry milling of aerospace alloys. Applied Thermal Engineering,36, 434–441.

    Article  Google Scholar 

  25. Komanduri, R., & Hou, Z. B. (2001). A review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology. Tribology International,34(10), 653–682.

    Article  Google Scholar 

  26. Abhang, L. B., & Hameedullah, M. (2010). Chip–tool interface temperature prediction model for turning process. International Journal of Engineering Science and Technology,2(4), 382–393.

    Google Scholar 

  27. Le Coz, G., & Dudzinski, D. (2014). Temperature variation in the workpiece and in the cutting tool when dry milling Inconel 718. The International Journal of Advanced Manufacturing Technology,74(5–8), 1133–1139.

    Article  Google Scholar 

  28. Stolz, G. (1960). Numerical solutions to an inverse problem of heat conduction for simple shapes. Journal of Heat Transfer,82(1), 20–25.

    Article  Google Scholar 

  29. Xu, H. J., Fu, Y. C., Sun, F. H., & Xu, X. P. (2002). Fundamental studies on enhancing heat transfer in contact zone during high efficiency grinding. Science in China Series E: Technological Sciences,45(3), 261–272.

    Article  Google Scholar 

  30. Shafto, G. R., Howes, T. D., & Andrew, C. (1975). Thermal aspects of creep feed grinding. In Proceedings of the 16th MTDR conference (pp. 31–35). Manchester, England.

  31. Ohishi, S., & Furukawa, Y. (1985). Analysis of workpiece temperature and grinding burn in creep feed grinding. Bulletin of the JSME,28(242), 1775–1781.

    Article  Google Scholar 

  32. Dhar, N. R., Paul, S., & Chattopadhyay, A. B. (2002). Role of cryogenic cooling on cutting temperature in turning steel. Journal of Manufacturing Science and Engineering,124(1), 146–154.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by National Natural Science Foundation of China (No. 51475298)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Q., Dang, J. Cooling Effects of Cold Mist Jet with Transient Heat Transfer on High-Speed Cutting of Titanium Alloy. Int. J. of Precis. Eng. and Manuf.-Green Tech. 7, 271–282 (2020). https://doi.org/10.1007/s40684-019-00076-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-019-00076-7

Keywords

Navigation