Skip to main content
Log in

Synthesis of 3D Flower-Like Ni0.6Zn0.4O Microspheres for Electrocatalytic Oxidation of Methanol

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The 3D flower-like Ni0.6Zn0.4O microspheres were prepared by calcination treatment of Ni–Zn LDHs (layered double hydroxides) that were obtained through a hydrothermal method. The yielded Ni0.6Zn0.4O microspheres were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). The results showed that the calcinated microspheres of Ni0.6Zn0.4O still well maintained the flower-like architecture of Ni–Zn LDHs. The surface area, total pore volume, and average pore diameter of the Ni0.6Zn0.4O microspheres were obtained with the values of 36.106 m2 g−1, 0.111 cm3 g−1, and 5.676 nm, respectively. As modified anode active materials, the Ni0.6Zn0.4O microspheres exhibited excellent electrocatalytic performance and fast electrochemical kinetics for methanol oxidation in strong alkaline electrolyte where the high surface area of flower-like Ni0.6Zn0.4O microspheres provides the high contact probability between catalysts and reactants. The presence of Zn also improves the electron transfer within catalysts inside. Also, the Ni0.6Zn0.4O modified electrode maintained good electrocatalytic performance during the term of 36,000 s.

Diagram of the formation of the flower-like Ni0.6Zn0.4O microspheres and CVs of Ni0.6Zn0.4O/GCE (a, d), NiO/GCE (b, e), and ZnO/GCE (c, f) in KOH solution without (a–c) and with (d–f) 0.1 M methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  1. P. Ma, H. Ma, S. Sabatino, A. Galia, O. Scialdone, Electrochemical treatment of real wastewater. Part 1: effluents with low conductivity. Chem. Eng. J. 336, 133–140 (2018)

    Article  CAS  Google Scholar 

  2. V. Thiagarajan, P. Karthikeyan, R. Manoharan, S. Sampath, A. Hernández-Ramírez, M.E. Sánchez-Castro, I.L. Alonso-Lemus, F.J. Rodríguez-Varela, Pt-Ru-NiTiO3 nanoparticles dispersed on vulcan as high performance electrocatalysts for the methanol oxidation reaction (MOR). Electrocatalysis 9(5), 582–592 (2018)

    Article  CAS  Google Scholar 

  3. D. Fa, Z. Mao, Z. Hui, Y. Jiang, Y. Miao, 3D flower-like Ni–Co–S with high specific surface area for the electrocatalytic oxidation of methanol. Polyhedron 144, 11–17 (2018)

    Article  CAS  Google Scholar 

  4. X. Guo, R. Cui, H. Huang, C. Li, H. Yao, B. Liu, L. Zhang, B. Xu, J. Dong, B. Sun, Facile synthesis of Ni-based catalysts by adsorption and conversion of metal ions on graphene oxide for methanol oxidation. Electrocatalysis 9(4), 429–436 (2018)

    Article  CAS  Google Scholar 

  5. S. Luo, Y. Chen, A. Xie, Y. Kong, Y. Tao, Y. Pan, C. Yao, Synthesis of PtNFs/PANI/NG with enhanced electrocatalytic activity towards methanol oxidation. Ionics 21(5), 1277–1286 (2015)

    Article  CAS  Google Scholar 

  6. X. Mingshu, C. Rui, H. Meifeng, Z. Mao, M. Yuqing, ACS Appl. Mater. Interfaces 7, 26101 (2015)

    Article  CAS  Google Scholar 

  7. T. Lena, J.K. Ranney, K.N. Williams, S.W. Boettcher, JACS 134, 17253 (2012)

    Article  CAS  Google Scholar 

  8. J. Wang, L. Ji, S. Zuo, Z. Chen, Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting. Adv. Energy Mater. 7(14), 1700107 (2017)

    Article  CAS  Google Scholar 

  9. M. Xiao, Y. Tian, Y. Yan, F. Kai, Y. Miao, Electrodeposition of Ni(OH)2/NiOOH in the presence of urea for the improved oxygen evolution. Electrochim. Acta 164, 196–202 (2015)

    Article  CAS  Google Scholar 

  10. X. Liang, M. Xiao, M. Xu, D. Yang, Y. Yan, Y. Tian, Y. Miao, Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution. J. Appl. Electrochem. 46(1), 1–8 (2016)

    Article  CAS  Google Scholar 

  11. M. Xiao, Y. Miao, W. Li, Y. Yang, X. Liang, Electrochim. Acta 178, S0013468615302516 (2015)

    Google Scholar 

  12. Y. Feng, Z. Lei, T. You, Z. Li, L. Xiang, Z. Wen, Mater. Lett. 194, 185 (2017)

    Article  CAS  Google Scholar 

  13. W. Wang, R. Li, L. Liu, R. Zhang, B. Wang, J. Solid State Electrochem. 19, 2001 (2015)

    Article  CAS  Google Scholar 

  14. Z. Yang, H. Zhou, J. Zhang, W. Cao, Relationship between Al/Mg ratio and the stability of single-layer hydrotalcite. Acta Phys. Chim. Sin. 23(6), 795–800 (2007)

    Article  Google Scholar 

  15. H. Kang, M. Leoni, H. He, G. Huang, X. Yang, Well-crystallized CO32--type LiAl-LDH from urea hydrolysis of an aqueous chloride solution. Eur. J. Inorg. Chem. 2012(24), 3859–3865 (2012)

    Article  CAS  Google Scholar 

  16. M.M. Rao, B.R. Reddy, M. Jayalakshmi, V.S. Jaya, B. Sridhar, Hydrothermal synthesis of Mg–Al hydrotalcites by urea hydrolysis. Mater. Res. Bull. 40(2), 347–359 (2005)

    Article  CAS  Google Scholar 

  17. Q. Li, Z. Lu, T. Xu, X. Wu, T. Yang, Y. Li, Z. Huo, X. Sun, D. Xue, Adv. Energy Mater. 5 (2015)

  18. N.R. Mathe, M.R. Scriba, R.S. Rikhotso, N.J. Coville, Electrocatalysis 9, 388 (2017)

    Article  CAS  Google Scholar 

  19. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257(7), 2717–2730 (2011)

    Article  CAS  Google Scholar 

  20. E. Rı́Os, H. Nguyen-Cong, J.F. Marco, J.R. Gancedo, P. Chartier, J.L. Gautier, Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3Co2.7O4 spinel oxide thin film electrodes. Electrochim. Acta 45(27), 4431–4440 (2000)

    Article  Google Scholar 

  21. W. Yu, L. Li, H. Zhang, Y. Jiao, Y. Mu, J. Mater. Chem. A 3, 22393 (2015)

    Article  CAS  Google Scholar 

  22. D. Ju, H. Zhang, Z. Yan, L. Pan, L. Li, W. Yu, J. Power Sources 372, 46 (2017)

    Article  CAS  Google Scholar 

  23. M.S. Akple, J. Low, S. Wageh, A.A. Al-Ghamdi, J. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196–203 (2015)

    Article  CAS  Google Scholar 

  24. X. Yu, J. Yu, C. Bei, M. Jaroniec, Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C 113(40), 17527–17535 (2009)

    Article  CAS  Google Scholar 

  25. D. Chen, S.D. Minteer, Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium. J. Power Sources 284, 27–37 (2015)

    Article  CAS  Google Scholar 

  26. K.K. Upadhyay, S. Eugénio, R.D. Noce, T.M. Silva, M.J. Carmezim, M.F. Montemor, Hydrothermally grown Ni0.7Zn0.3O directly on carbon fiber paper substrate as an electrode material for energy storage applications. Int. J. Hydrog. Energy 41(23), 9876–9884 (2016)

    Article  CAS  Google Scholar 

  27. N. Spinner, W.E. Mustain, Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol. Electrochim. Acta 56(16), 5656–5666 (2011)

    Article  CAS  Google Scholar 

  28. A.I. Ciszewski, Electrochim. Acta 76, 462 (2012)

    Article  CAS  Google Scholar 

  29. L.S. Yuan, Y.X. Zheng, M.L. Jia, S.J. Zhang, X.L. Wang, C. Peng, Nanoporous nickel-copper-phosphorus amorphous alloy film for methanol electro-oxidation in alkaline medium. Electrochim. Acta 154, 54–62 (2015)

    Article  CAS  Google Scholar 

  30. M.A. Domínguez-Crespo, A.M. Torres-Huerta, B. Brachetti-Sibaja, A. Flores-Vela, Electrochemical performance of Ni–RE (RE = rare earth) as electrode material for hydrogen evolution reaction in alkaline medium. Int. J. Hydrog. Energy 36(1), 135–151 (2011)

    Article  CAS  Google Scholar 

  31. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55(21), 6290–6294 (2016)

    Article  CAS  Google Scholar 

  32. Y. Yu, J. Zhang, M. Zhong, S. Guo, Co3O4 nanosheet arrays on Ni foam as electrocatalyst for oxygen evolution reaction. Electrocatalysis 9(6), 653–661 (2018)

    Article  CAS  Google Scholar 

  33. J. Li, Z. Luo, Y. Zuo, J. Liu, T. Zhang, P. Tang, J. Arbiol, J. Llorca, A. Cabot, NiSn bimetallic nanoparticles as stable electrocatalysts for methanol oxidation reaction. Appl. Catal. B Environ. 234, 10–18 (2018)

    Article  CAS  Google Scholar 

  34. N. Ullah, M. Xie, C.J. Oluigbo, Y. Xu, J. Xie, H.U. Rasheed, M. Zhang, Nickel and cobalt in situ grown in 3-dimensional hierarchical porous graphene for effective methanol electro-oxidation reaction. J. Electroanal. Chem. 838, 7–15 (2019)

    Article  CAS  Google Scholar 

  35. W. Yang, X. Yang, J. Jia, C. Hou, H. Gao, Y. Mao, C. Wang, J. Lin, X. Luo, Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Appl. Catal. B Environ. 244, 1096–1102 (2019)

    Article  CAS  Google Scholar 

  36. T. Noor, N. Zaman, H. Nasir, N. Iqbal, Z. Hussain, Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction. Electrochim. Acta 307, 1–12 (2019)

    Article  CAS  Google Scholar 

  37. B. Kaur, R. Srivastava, B. Satpati, ACS Catal 6, acscatal.6b00525 (2016)

    Article  CAS  Google Scholar 

  38. Y. Jie, Y. Ni, M. Zhai, J. Phys. Chem. Solids 112, 119 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengliang Wei or Yuqing Miao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Qian, L., Jia, D. et al. Synthesis of 3D Flower-Like Ni0.6Zn0.4O Microspheres for Electrocatalytic Oxidation of Methanol. Electrocatalysis 10, 540–548 (2019). https://doi.org/10.1007/s12678-019-00542-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-019-00542-5

Keywords

Navigation