Skip to main content
Log in

Group-Theoretical Analysis of Symmetry Transformations on the Example of Some Aquatic Organisms

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—Group-theoretical analysis of the pseudosymmetry of two-dimensional images of aquatic organisms of the classes Conjugatophyceae, Bacillariophyceae, Acantharia, and Asteroidea and the symmetry transformations in the ontogeny of echinoderms has been performed for the first time in the original BioPsLeaf and BioPsFlower software, and the results of the analysis are presented below. Published materials, including graphic illustrations from Haeckel’s book Künstformen der Natur were the sources of the two-dimensional images of aquatic organisms used in the study. The choice of aquatic organisms was largely determined by the Curie principle, which imposes restrictions on the symmetry groups of living organisms with consideration of the specific habitat. Analysis of the organisms from the considered classes showed that the invariance (symmetry) of a biological object that can be roughly described by the Cnv group of operations of the Schoenflies system could be generally characterized by two numerical parameters, i.e., the minimum values of the degrees of pseudosymmetry both among all of its local maxima for turn operations (ηr) and mirror reflections (ηb). Analysis of Asterina amurensis as an example showed that the complete starfish metamorphosis could be represented by symmetry transformations in the form of the following series:                                                                         С4vС2vCsC5v, which reflects the natural transition from rotational symmetry to bilateral and again to the rotational due to the biological characteristics of the organism at different stages of development. This series is consistent with the Curie principle: a system under external influence changes its point symmetry in such a way that only the symmetry operations in common with the symmetry operations of the influence are preserved. It is emphasized that exactly the group theory enables the characterization of an object’s invariance with respect to spatial transformations—in other words, its symmetry. In turn, the identification of invariants as a certain class of objects makes it possible to determine their structural basis and thus can help to find the invariable in the variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Afanas’eva, M.S. and Amon, E.O., Symmetry in radiolarian skeletons, Litosfera, 2014, no. 2, pp. 39–49.

  2. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Fundamentals of Comparative Anatomy of Invertebrates), Moscow: Nauka, 1964, in 2 vols.

  3. Belousov, L.V., Symmetry transformations in the development of organisms, in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya (Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2013, pp. 6–21.

    Google Scholar 

  4. Born, M., Physics in My Generation, New York: Springer-Verlag, 1968.

    Book  Google Scholar 

  5. Chudaev, D.A., Kupreeva, M.D., and Gololobova, M.A., On the studies of the species of Navicula bory sensu stricto (Diatomophyceae) of Moskva River, Moscow Univ. Biol. Sci. Bull., 2015, vol. 70, no. 2, pp. 91–98.

    Article  Google Scholar 

  6. Chuprunov E.V., Simmetriya i psevdosimmetriya kristallov (Symmetry and Pseudosymmetry of Crystals), Nizhny Novgorod: Nizhegorod. Gos. Univ., 2015.

    Google Scholar 

  7. Corley, S.B., Carpenter, R., Copsey, L., and Coen, E., Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum, Proc. Nat. Acad. Sci. U.S.A., 2005, vol. 102, no. 14, pp. 5068–5073.

    Article  CAS  Google Scholar 

  8. Danilov, Yu.A., Theoretical-group properties of mathematical models in biology, in Matematicheskaya biologiya razvitiya (Mathematical Biology of Development), Zotin, A.I. and Presnov, E.V., Eds., Moscow: Nauka, 1982, pp. 5–15.

    Google Scholar 

  9. Donoghue, M.J., Ree, R.H., and Baum, D.A., Phylogeny and evolution of flower symmetry in the Asteridae, Trends Plant Sci., 1998, vol. 3, pp. 311–317.

    Article  Google Scholar 

  10. Endress, P.K., Symmetry in flowers: diversity and evolution, Int. J. Plant Sci., 1999, vol. 160, suppl. 6, pp. S3–S23.

    Article  CAS  PubMed  Google Scholar 

  11. Endress, P.K., The immense diversity of floral monosymmetry and asymmetry across angiosperms, Bot. Rev., 2012, vol. 78, pp. 345–397.

    Article  Google Scholar 

  12. Gelashvili, D.B., Chuprunov, E.V., and Iudin, D.I., Structural-information indices of fluctuating asymmetry of bilaterally symmetrical organisms, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 377–385.

    Google Scholar 

  13. Gelashvili, D.B., Chuprunov, E.V., Marychev, M.O., Somov, N.V., Shirokov, A.I., and Nizhegorodtsev, A.A., The application of group theory to the description of pseudosymmetry, Biol. Bull. Rev., 2011, vol. 1, no. 3, pp. 185–198.

    Article  Google Scholar 

  14. Gelashvili, D.B., Chuprunov, E.V., Somov, N.V., Marychev, M.O., Nizhegorodtsev, A.A., Markelov, I.N., and Yakimov, V.N., Psevdosimmetriya v zhivoi prirode (Pseudosymmetry in Living Nature), Gelashvili, D.B. and Chuprunov, E.V., Eds., Nizhny Novgorod: Nizhegorod. Gos. Univ., 2016.

    Google Scholar 

  15. Gilyarov, M.S., Functional role of symmetry for organisms, Zool. Zh., 1944, vol. 23, no. 5, pp. 213–215.

    Google Scholar 

  16. Gol’danskii, V. I. and Kuz’min, V.V., Spontaneous breaking of mirror symmetry in nature and the origin of life, Sov. Phys. Usp., 1989, vol. 32, no. 1, pp. 1–29.

    Article  Google Scholar 

  17. Goncharov, A.A., Problems of systematics conjugates (Zygnematophyceae, Streptophyta) in terms of molecular-phylogenetic data, Bot. Zh., 2009, vol. 94, no. 10, pp. 1417–1438.

    Google Scholar 

  18. Haeckel, E., Generelle Morphologie der Organismen. Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch Begründet Durch die von Charles Darwin Reformirte Descendenztheorie, Berlin: Georg Reimer, 1866, vol. 1.

  19. Haeckel, E., Kunstformen der Natur, Leipzig: Verlag Bibliogr. Inst., 1899–1904.

  20. Hileman, L., Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances, Philos. Trans. R. Soc. B, 2014, vol. 369, no. 1648, p. 20130348. https://doi.org/10.1098/rstb.2013.0348

    Article  Google Scholar 

  21. Isaeva, V.V., Symmetry transformations in ontogenesis and evolution, in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya (Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2013, pp. 22–43.

    Google Scholar 

  22. Kashenko, S.D., Chronology of development in the starfish Asterina pectinifera from Vostok Bay, Sea of Japan, Russ. J. Mar. Biol., 2005, vol. 31, no. 4, pp. 261–264.

    Article  Google Scholar 

  23. Mordukhai-Boltovskoi, D.D., Geometriya radiolyarii (Geometry of Radiolarians), Moscow: Librokom, 2012, 2nd ed.

    Google Scholar 

  24. Petukhov, S.V., Biomekhanika, bionika i simmetriya (Biomechanics, Bionics, and Symmetry), Moscow: Nauka, 1981.

    Google Scholar 

  25. Preston, J.C., Hileman, L.C., Developmental genetics of floral symmetry evolution, Trends Plant Sci., 2009, vol. 14, pp. 147–154.

    Article  CAS  PubMed  Google Scholar 

  26. Shubnikov, A.V. and Koptsik, V.A., Simmetriya v nauke i iskusstve (Symmetry in Science and Art), Moscow: Nauka, 1972.

    Google Scholar 

  27. Somov, N.V. and Chuprunov, E.V., Pseudosymmetry software for studying the pseudosymmetry of crystal atomic structures, Crystallogr. Rep., 2014, vol. 59, no. 1, pp. 137–139.

    Article  CAS  Google Scholar 

  28. Stewart, I., Why Beauty Is Truth: A History of Symmetry, New York, NY: Basic Books, 2007.

    Google Scholar 

  29. Thompson, D’A.W., On Growth and Form, Cambridge: Cambridge Univ. Press, 2000, pp. 268–325.

  30. Tverdislov, V.A., Sidorova, A.E., and Yakovenko, L.V., From symmetries to the laws of evolution. I. Chirality as a means of active media stratification, Biophysics (Moscow), 2012, vol. 57, no. 1, pp. 120–126.

  31. Urmantsev, Yu.A., Simmetriya prirody i priroda simmetrii (The Symmetry of Nature and the Nature of Symmetry), Moscow: Mysl’, 1974.

    Google Scholar 

  32. Voitekhovskii, Yu.L., Geometrical motives in the Tetraodontiformes fishes morphology, Zh. Obshch. Biol., 2009, vol. 70, no. 3, pp. 257–261.

    PubMed  Google Scholar 

  33. Voitekhovskii, Yu.L., Symmetry, asymmetry, dissymmetry, and enantiomorphism of polyhedral forms, in Morfogenez v individual’nom i istoricheskom razvitii: simmetriya i asimmetriya (Morphogenesis in Individual and Historical Development: Symmetry and Asymmetry), Moscow: Paleontol. Inst., Ross. Akad. Nauk, 2013, pp. 44–53.

    Google Scholar 

  34. Voitekhovskii, Yu.L., Timofeeva, M.G., and Stepenshchikov, D.G., The Curie principle and the morphological diversity of Pandorina morum (Mull.) Bory colonies (Volvocaceae), Zh. Obshch. Biol., 2006, vol. 67, no. 3, pp. 206–211.

    PubMed  Google Scholar 

  35. Weyl, H., Symmetry, Princeton, NJ: Princeton Univ. Press, 1952.

    Book  Google Scholar 

  36. Zakharov, V.M., Asimmetriya zhivotnykh (Asymmetry of Animals), Moscow: Nauka, 1987.

    Google Scholar 

  37. Zarenkov, N.A., Biosimmetrika (Biosymmetry), Moscow: Librokom, 2009.

    Google Scholar 

  38. Zhizn’ zhivotnykh. Tom 3. Bespozvonochnye (Life of Animals, Vol. 3: Invertebrates), Zenkevich, L.A., Ed., Moscow: Prosveshchenie, 1968.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Gelashvili.

Additional information

Translated by S. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelashvili, D.B., Chuprunov, E.V., Somov, N.V. et al. Group-Theoretical Analysis of Symmetry Transformations on the Example of Some Aquatic Organisms. Biol Bull Rev 9, 203–214 (2019). https://doi.org/10.1134/S2079086419030058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419030058

Navigation