Skip to main content
Log in

Compositions and Formation Conditions of Primitive Magmas of the Karymsky Volcanic Center, Kamchatka: Evidence from Melt Inclusions and Trace-Element Thermobarometry

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This paper reports the results of a study of naturally and experimentally quenched melt inclusions in magnesian olivine (Fo77–89) from a basalt sample from the Karymsky volcanic center, which is located in the middle segment of the Eastern Volcanic Front of Kamchatka. The conditions of parental magma formation were estimated using modern methods of trace-element thermometry. Based on direct H2O measurements in inclusions and thermometry of coexisting olivine and spinel, it was shown that the parent melts contained at least 4.5 wt % H2O and crystallized at a temperature of 1114 ± 27°C and an oxygen fugacity of ΔQFM = 1.5 ± 0.4. The obtained estimates of H2O content and crystallization temperature are among the first and currently most reliable data for the Eastern Volcanic Front of Kamchatka. The primary melt of the Karymsky volcanic center was derived from peridotitic material and could be produced by ~12–17% melting of an enriched MORB source (E-DMM) at ~1230–1250°C and ~1.5 GPa. Our estimates of mantle melting temperature beneath Kamchatka are slightly lower than values reported previously and up to 50°C lower than the dry peridotite solidus, which indicates the influence of a slab-derived hydrous melt. The combined approach to the estimation of the initial H2O content of melt employed in this study can provide a more reliable data in future investigations, and its application will probably decrease the existing temperature estimates for the mantle wedge above subduction zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, pp. 670–674.

    Article  Google Scholar 

  2. Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  3. Braitseva, O.A. and Melekestsev, I.V., Eruptive history of Karymsky Volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating, Bull. Volcanol., 1991, vol. 53, no. 3, pp. 195–206.

    Article  Google Scholar 

  4. Braitseva, O.A., Melekestsev, I.V., Ponomareva, V.V., and Sulerzhitsky, L.D., The ages of calderas, large explosive craters and active volcanoes in the Kuril–Kamchatka region, Bull. Volcanol., 1995, vol. 57, no. 6, pp. 383–402.

    Google Scholar 

  5. Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N., Postentrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.

    Article  Google Scholar 

  6. Chen, Y., Provost, A., Schiano, P., and Cluzel, N., The rate of water loss from olivine-hosted melt inclusions, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 625–636.

    Article  Google Scholar 

  7. Coogan, L.A., Saunders, A.D., and Wilson, R.N., Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces, Chem. Geol., 2014, vol. 368, pp. 1–10.

    Article  Google Scholar 

  8. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7. https://doi.org/10.1029/2011GC003516

  9. Ford, C.E., Russel, D.G., Graven, J.A., and Fisk, M.R., Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca, and Mn, J. Petrol., 1983, vol. 24, pp. 256–265.

    Article  Google Scholar 

  10. Gaetani, G.A., O’Leary, J.A., Shimizu, N., et al., Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions, Geology, 2012, vol. 40, pp. 915–918.

    Article  Google Scholar 

  11. Gorbatov, A., Kostoglodov, V., Suarez, G., and Gordeev, E., Seismicity and structure of the Kamchatka subduction zone, J. Geophys. Res., 1997, vol. 102, pp. 17883–17898.

    Article  Google Scholar 

  12. Grib, E.N., Mineralogical features of olivine-bearing basalts of the Karymsky volcanic center, Vestn. KRAUNTs. Ser. Nauki o Zemle, 2007, vol. 2, no. 10, pp. 17–32.

  13. Grib, E.N. and Perepelov, A.B., Olivine basalts at the Karymskii volcanic center: mineralogy, petrogenesis, and magma sources, J. Volcanol. Seismol., 2008, vol. 2, no. 4, pp. 228–247.

    Article  Google Scholar 

  14. Grove, T.L., Till, C.B., and Krawczynski, M.J., The role of H2O in subduction zone magmatism, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, no. 1, pp. 413–439.

    Article  Google Scholar 

  15. Ivanov, B.V., Izverzhenie Karymskogo vulkana v 1962–1965 gg. i vulkany Karymskoi gruppy (1962–1965 Eruptions of Karymsky Volcano and Volcanoes of the Karymsky Group), Moscow: Nauka, 1970.

  16. Izbekov, P.E., Eichelberger, J.C., and Ivanov, B.V., The 1996 eruption of Karymsky Volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir, J. Petrol., 2004, vol. 45, pp. 2325–2345.

    Article  Google Scholar 

  17. Jarosewich, E.J., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, pp. 43–47.

    Article  Google Scholar 

  18. Kamenetsky, V.S., Zelensky, M., Gurenko, A., et al., Silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt, Chem. Geol., 2017, vol. 471, pp. 92–110.

    Article  Google Scholar 

  19. Kelley, K.A., Plank, T., Grove, T.L., et al., Mantle melting as a function of water content beneath back-arc basins, J. Geophys. Res., 2006, vol. 111, p. B09208.

    Article  Google Scholar 

  20. Kelley, K.A., Plank, T., Newman, S., et al., Mantle melting as a function of water content beneath the Mariana arc, J. Petrol., 2010, vol. 51, pp. 1711–1738.

    Article  Google Scholar 

  21. Khubunaya, S.A. and Sobolev, A.V., Primary melts of calc-alkaline magnesian basalts from the Klyuchevskoi Volcano, Kamchatka, Dokl. Earth Sci., 1998, vol. 360, no. 1, pp. 537–539.

    Google Scholar 

  22. Lange, R.A., The effect of H 2 O, CO 2 and F on the density and viscosity of silicate melts, Volatiles in Magmas. Rev. Mineral., Carrol, M.R. and Holloway, J.R., Eds., Washington: Mineral. Soc. Am., 1994, vol. 30, pp. 331—369.

    Google Scholar 

  23. Lee, C.-T.A., Luffi, P., Plank, T., et al., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth Planet. Sci. Lett., 2009, vol. 279, no. 1, pp. 20–33.

    Article  Google Scholar 

  24. Lloyd, A.S., Plank, T., Ruprecht, P., et al., Volatile loss from melt inclusions in pyroclasts of differing sizes, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 129–153.

    Article  Google Scholar 

  25. Le Losq, C., Neuville, D.R., Moretti, R., and Roux, J., Determination of water content in silicate glasses using Raman spectrometry: implications for the study of explosive volcanism, Am. Mineral., 2012, vol. 97, nos. 5–6, pp. 779–790.

    Article  Google Scholar 

  26. Mallmann, G. and O’Neill, H.St.C., Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt, J. Petrol., 2013, vol. 54, no. 5, pp. 933–949.

    Article  Google Scholar 

  27. Mironov, N., Portnyagin, M., Botcharnicov, R., et al., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sci. Lett., 2015, vol. 415, pp. 1–11.

    Article  Google Scholar 

  28. Naumov, V.B., Tolstykh, M.L., Grib, E.N., et al., Chemical composition, volatile components, and trace elements in melts of the Karymskii volcanic center, Kamchatka, and Golovnina Volcano, Kunashir Island: evidence from inclusions in minerals, Petrology, 2008, vol. 16, no. 1, pp. 1–18.

    Article  Google Scholar 

  29. Naumov, V.B., Dorofeeva, V.A., Girnis, A.V., and Yarmo-lyuk, V.V., Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks, Geochem. Int., 2014, vol. 52, no. 5, pp. 347–364.

    Article  Google Scholar 

  30. Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O content and conditions of parent magma origin for Gorely Volcano (Southern Kamchatka) estimated by trace element thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 3, pp. 100–103.

    Article  Google Scholar 

  31. Nikolaev, G.S., Ariskin, A.A., Barmina, G.S., et al., Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel, Geochem. Int., 2016, vol. 54, no. 4, pp. 323–343.

    Article  Google Scholar 

  32. Plank, T., Cooper, L., and Manning, C.E., Emerging geothermometers for estimating slab surface temperatures, Nature Geosci., 2009, vol. 2, pp. 611–615.

    Article  Google Scholar 

  33. Plank, T., Kelley, K., Zimmer, M.M., et al., Why do mafic arc magmas contain ~4 wt % water on average?, Earth Planet. Sci. Lett., 2013, vol. 364, pp. 168–179.

    Article  Google Scholar 

  34. Plechov, P., Blundy, J., Nekrylov, N., et al., Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–2013, J. Volcanol. Geother. Res., 2015, vol. 307, pp. 182–199.

    Article  Google Scholar 

  35. Plechova, A.A., Portnyagin, M.V., and Bazanova L.I., The origin and evolution of the parental magmas of frontal volcanoes in Kamchatka: evidence from magmatic inclusions in olivine from Zhupanovsky Volcano, Geochem. Int., 2011, no. 8, pp. 743–767.

  36. Portnyagin, M.V., Simakin, S.G., and Sobolev, A.V., Fluorine in primitive magmas of the Troodos ophiolite complex, Cyprus: analytical methods and main results, Geochem. Int., 2002, vol. 40, no. 7, pp. 625–632.

    Google Scholar 

  37. Portnyagin, M.V., Mironov, N.L., Matveev, S.V., and Plechov, P.Yu., Petrology of avachites, high-magnesian basalts of Avachinsky Volcano, Kamchatka: II. Melt inclusions in olivine, Petrology, 2005, vol. 13, no. 4, pp. 322–351.

    Google Scholar 

  38. Portnyagin, M.V., Hoernle, K., Plechov, P.Y., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007, vol. 255, nos. 1–2, pp. 53–69.

    Article  Google Scholar 

  39. Portnyagin, M., Almeev, R., Matveev, S., and Holtz, F., Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma, Earth Planet. Sci. Lett., 2008, vol. 272, pp. 541–552.

    Article  Google Scholar 

  40. Portnyagin, M.V., Naumov, V.B., Mironov, N.L., et al., Composition and evolution of the melts erupted in 1996 at Karymskoe Lake, Eastern Kamchatka: evidence from inclusions in minerals, Geochem. Int. 2011, vol. 49, no. 11, pp. 1085–1110.

    Article  Google Scholar 

  41. Portnyagin, M.V., Mironov, N.L., and Nazarova, D.P., Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka, Petrology, 2017, vol. 25, no. 4, pp. 419–432.

    Article  Google Scholar 

  42. Ruscitto, D., Wallace, P.J., Cooper, L., and Plank, T., Global variations in H2O/Ce: II. Relationships to arc magma geochemistry and volatile fluxes, Geochem., Geophys., Geosyst., 2012, vol. 13, p. Q03025.

    Article  Google Scholar 

  43. Schmidt, M.W. and Poli, S., Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 1998, vol. 163, pp. 361– 379.

    Article  Google Scholar 

  44. Shishkina, T.A., Botcharnikov, R.E., Holtz, F., et al., Solubility of H2O- and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, pp. 115–125.

    Article  Google Scholar 

  45. Shishkina, T., Botcharnikov, R.E., Holtz, F., et al., Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts, Chem. Geol., 2014, vol. 388, pp. 112–129.

    Article  Google Scholar 

  46. Shishkina, T.A., Portnyagin, M.V., Botcharnikov, R.E., et al., Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous basaltic arc magmas, Am. Mineral., 2018, vol. 103, no. 3, pp. 369–383.

    Article  Google Scholar 

  47. Sisson, T.W. and Grove, T.L., Temperatures and H2O contents of low MgO high alumina basalts, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 167–184.

    Article  Google Scholar 

  48. Sobolev, A.V. and Chaussidon, M., H2O concentrations in primary melts from island arcs and mid ocean ridges: implications for H2O storage and recycling in the mantle, Earth Planet. Sci. Lett., 1996, vol. 137, pp. 45–55.

    Article  Google Scholar 

  49. Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., The amount of recycled crust in sources of mantle derived melts, Science, 2007, vol. 316, pp. 412–417.

    Article  Google Scholar 

  50. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal an Archean hydrous deep-mantle reservoir, Nature, 2016, vol. 531, no. 7596, pp. 628–632.

    Article  Google Scholar 

  51. Sparks, R.A.J., Barclay, J., Jaupart, C., et al., Physical aspects of magmatic degassing. I. Experimental and theoretical constraints on visiculation, Volatiles in Magmas. Reviews in Mineralogy, Carrol, M.R. and Holloway, J.R., Eds., Washington: Mineralogical Society of America, 1994, vol. 30, pp. 413–445.

    Google Scholar 

  52. Stolper, E. and Newman, S., The role of water in the petrogenesis of Mariana trough magmas, Earth Planet. Sci. Lett., 1994, vol. 121, pp. 293–325.

    Article  Google Scholar 

  53. Sun, S.-S. and Mcdonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ. London, 1989, vol. 42, pp. 313–345.

    Google Scholar 

  54. Tolstykh, M.L., Naumov V.B., Ozerov, A.Yu., and Kononkova, N.N., Composition of magmas of the 1996 eruption at the Karymskii Volcanic Center, Kamchatka: evidence from melt inclusions, Geochem. Int., 2001, vol. 39, no. 5, pp. 447–458.

    Google Scholar 

  55. van Keken, P.E., Kiefer, B., and Peacock, S.M., High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle, Geochem., Geophys., Geosyst., 2002, vol. 3, no. 10. doi 10.1029/2001GC000256

  56. Vulkanicheskii tsentr: stroenie, dinamika, veshchestvo (Karymskaya struktura) (Volcanic Center: Structure, Dynamics, and Composition (Karymsky Structure)), Masurenkov, Yu.P., Ed., Moscow: Nauka, 1980.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to M. Thöner (GEOMAR) for help in microprobe analysis, S.G. Simakin and E.V. Potapov (Yaroslavl Filial of the Physical Technological Institute of the Russian Academy of Sciences) for the SIMS analysis of trace elements, M.S. Tikhonova (Moscow State University) for some of the Raman spectroscopic measurements, and T.A. Shishkina (Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences) for assistance and consultations during the Raman spectroscopic investigation of melt inclusions. We thank N.L. Mironov for advice during manuscript preparation and discussion of the obtained results and V.S. Kamenetsky for reviewing the manuscript, helpful comments, and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Tobelko or M. V. Portnyagin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Girnis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobelko, D.P., Portnyagin, M.V., Krasheninnikov, S.P. et al. Compositions and Formation Conditions of Primitive Magmas of the Karymsky Volcanic Center, Kamchatka: Evidence from Melt Inclusions and Trace-Element Thermobarometry. Petrology 27, 243–264 (2019). https://doi.org/10.1134/S0869591119030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591119030068

Keywords:

Navigation