Skip to main content
Log in

Birth and initial developments of experiments with resonant detectors searching for gravitational waves

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A history of the experiments for the search of gravitational waves, with emphasis on the experiments made by the Rome group, is given. The search for gravitational waves was initiated by the brilliant scientific acumen of Joseph Weber. In this paper we start from the early times of the resonant detectors at room temperature and continue with the cryogenic resonant detectors: STANFORD, ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE. These cryogenic detectors reached a sensitivity able to observe gravitational waves generated by the conversion of about 0.001 solar masses in the Galaxy. This was an improvement by a factor of a few thousand in energy with respect to the early room temperature experiments. No clear signals due to gravitational waves have been observed with this technique. This research, that has lasted four decades, has paved the way to the more sensitive detectors for gravitational waves, the long-arm laser interferometers, which announced, on February 12th 2016, the first observation of gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B.P. et al. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116: 061102.

    Article  ADS  Google Scholar 

  2. Aglietta, M. et al. 1989. Analysis of the Data Recorded by the Mont Blanc Neutrino Detector and by the Maryland and Rome Gravitational-Wave Detectors during SN1987A. Nuovo Cimento C 12: 75–103.

    Article  ADS  Google Scholar 

  3. Aglietta, M. et al. 1991a. Coincidences among the Data Recorded by the Baksan, Kamioka and Mont Blanc Underground Neutrino Detectors, and by the Maryland and the Rome Gravitational-Wave Detectors during Supernova 1987A. Nuovo Cimento C 14: 171–193.

    Article  ADS  Google Scholar 

  4. Aglietta, M. et al. 1991b. Correlation between the Maryland and Rome Gravitational-Wave Detectors and the Mont Blanc, Kamioka and IMB Particle Detectors During SN1987A. Nuovo Cimento B 106: 1257–1269.

    Article  ADS  Google Scholar 

  5. Allega, A.M. and N. Cabibbo. 1983. Acoustic detection of superheavy monopoles in gravitational antennas. Lett. Nuovo Cimento 38: 263.

    Article  ADS  Google Scholar 

  6. Allen, W.D. and C. Christodoulides. 1975. Gravitational radiation experiments at the University of Reading and the Rutherford Laboratory. J. Phys. A: Math. Gen. 8: 11.

    Article  Google Scholar 

  7. Amaldi, E. and G. Pizzella. 1979. Relativitiy, Quanta, and Cosmology in the development of the scientific thought of Albert Einstein. Johnson Reprint Corp., Academic Press.

  8. Amaldi, E. and G. Pizzella. 1986. Estimate of the background of a gravitational-wave detector due to cosmic rays. Il Nuovo Cimento 9: 612–620.

    Article  ADS  Google Scholar 

  9. Amaldi, E. et al. 1976. Gravitazione Sperimentale. Accademia Nazionale dei Lince, Pavia.

  10. Amaldi, E. and others. 1977. Measurement at 4.2 K of the Brownian Noise in a 20 kg Gravitational Wave Antenna and Upper Limit for Gravitational Radiation at 8580 Hz. Lett. Nuovo Cimento 18: 425–432.

    Article  ADS  Google Scholar 

  11. Amaldi, E. and others. 1978. Initial Operation of the m = 390 kg Cryogenic Gravitation Wave Antenna. Nuovo Cimento C1 18: 497–509.

    Article  Google Scholar 

  12. Amaldi, E. and others. 1980. The 390 kg prototype of cryogenic resonant gravitational wave antenna. Lett. Nuovo Cimento 18: 362.

    Article  ADS  Google Scholar 

  13. Amaldi, E. et al. 1986. Preliminary Results on the Operation of a 2270 kg Cryogenic Gravitational Wave Antenna With a Resonant Capacitive Transducer and a DC Squid Amplifier. Il Nuovo Cimento C 9: 829–845.

    Article  ADS  Google Scholar 

  14. Amaldi, E. et al. 1987a. Data recorded by the Rome room temperature gravitational wave antenna during SN1987A. LA THUILE 1987, Results and Perspectives in Particle Physics.

  15. Amaldi, E. et al. 1987b. Data recorded by the Rome Room Temperature GW Antenna, during the SN1987A in the large Magellanic Cloud. Editions Frontieres, M. Greco.

  16. Amaldi, E. et al. 1989. First GWs coincidence experiment between resonant gravitational wave detectors – Louisiana- Rome- Stanford. Astronomy and Astrophysics 216: 325–332.

    ADS  Google Scholar 

  17. Aplin, P.S. 1972. An improved detector of gravitational radiation. Gen. Rel. Grav. 3: 111–113.

    Article  ADS  Google Scholar 

  18. Ashby, N. et al. 1990. General Relativity and Gravitation. Cambridge University Press, Cambridge.

  19. Astone, P. and G. Pizzella. 2002. On upper limits for gravitational radiation. Astroparticle Phys. 16: 441–450.

    Article  ADS  Google Scholar 

  20. Astone, P. et al. 1991. Evaluation and preliminary measurement of the interaction of a dynamical gravitational near field with a cryogenic gravitational wave antenna. Zeit. Script C – Particles and Fields 50: 21–29.

    Article  Google Scholar 

  21. Astone, P. et al. 1996. Upper limit for a gravitational-wave stochastic background with the EXPLORER and NAUTILUS resonant detectors. Phys. Lett. B 385: 421–424.

    Article  ADS  Google Scholar 

  22. Astone, P. et al. 2000. Cosmic rays observed by the resonant gravitational wave detector NAUTILUS. Phys. Rev. Lett. 84: 14–17.

    Article  ADS  Google Scholar 

  23. Astone, P. et al. 2001. Search for periodic gravitational wave sources with the Explorer detector. Phys. Rev. D 65: 022001.

    Article  ADS  Google Scholar 

  24. Astone, P. et al. 2002a. The EXPLORER gravitational wave antenna: Recent improvements and performances. Class. Quant. Grav. 19: 1905–1910.

    Article  ADS  Google Scholar 

  25. Astone, P. et al. 2002b. The next science run of the gravitational wave detector NAUTILUS. Class. Quantum Grav 218: 1911–1917.

    Article  ADS  Google Scholar 

  26. Astone, P. et al. 2005. Cumulative analysis of the association between the gravitational wave detectors NAUTILUS and EXPLORER and the gamma-ray bursts detected by BATSE and BeppoSAX. Phys. Rev. D 71: 042001.

    Article  ADS  Google Scholar 

  27. Astone, P. et al. 2006. Result of a preliminary data analysis in coincidence between the LSU and Rome gravitational wave antennas. Proc. 10GR, World Scientific, Singapore, 1992.

  28. Astone, P. et al. 2008. Detection of high energy cosmic rays with the resonant gravitational wave detector NAUTILUS and EXPLORER. Astroparticle Phys. 30: 200–208.

    Article  ADS  Google Scholar 

  29. Astone, P. et al. 2010. A 17-month search for gravitational wave bursts in 2005–2007. Phys. Rev. D 82: 022003.

    Article  ADS  Google Scholar 

  30. Astone, P. et al. 2013. Analysis of 3 y of data from the gravitational wave detectors EXPLORER and NAUTILUS. Phys. Rev. D 87: 082002.

    Article  ADS  Google Scholar 

  31. AURIGA. 2016. http://www.auriga.lnl.infn.it/auriga/publications/publications.html.

  32. Baggio, L. et al. 2005. 3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors. Phys. Rev. Lett. 94: 241101.

    Article  ADS  Google Scholar 

  33. Bassan, M. et al. 2016. Dark Matter searches using gravitational wave bar detectors: quark nuggets and newtorites. Astroparticle Phys. 78: 52–64.

    Article  ADS  Google Scholar 

  34. Bernard, C. et al. 1984. Sonic search for monopoles, gravitational waves and newtorites. Nucl. Phys. B 242: 93–144.

    Article  ADS  Google Scholar 

  35. Beron, B.L. and R. Hofstander. 1969. Generation of Mechanical Vibrations by Penetreting Particles. Phys. Rev. Lett. 23: 184.

    Article  ADS  Google Scholar 

  36. Beron, B.L. et al. 1970. Mechanical Oscillations Induced by Penetrating Particles. IEEE Trans. Nucl. Sci. 17: 65–66.

    Article  ADS  Google Scholar 

  37. Billing, H. and W. Winkler. 1976. The Munich Gravitational-Wave Detector. Nuovo Cimento B 33: 665–680.

    Article  ADS  Google Scholar 

  38. Blair, D.G. 1991. The Detection of Gravitational Waves. Cambridge University Press, Cambridge, United Kingdom.

  39. Blair, D.G. et al. 1995. Operation of the Perth cryogenic resonant-bar gravitational wave detector. World Scientific, Singapore.

  40. Bonazzola, S. et al. 1973. Meudon Gravitational Radiation Detection Experiment. Colloques Internationaux du Centre National de la Recherche Scientifique 220: 101–111.

    Google Scholar 

  41. Bonifazi, P. et al. 1978. Data Analysis Algorithms for Gravitational Wave Experiments. Nuovo Cimento C1 4: 465–487.

    Article  ADS  Google Scholar 

  42. Bonifazi, P. et al. 1996. Test of a back-action evading scheme on a cryogenic gravitational wave antenna. Phys. Lett. A 215: 109–217.

    Article  ADS  Google Scholar 

  43. Boughn, S.P. and others. 1977. Observation of Mechanical Nyquist Noise in a Cryogenic Gravitational-Wave Antenna. Phys. Rev. Lett. 38: 454–457.

    Article  ADS  Google Scholar 

  44. Boughn, S.P. and others. 1982. Observations with a Low-Temperature, Resonant Mass, Gravitational Radiation Detector. Astrophys. J. 261, L19–L22.

    Article  ADS  Google Scholar 

  45. Braginskii, V.B. and Y.I. Vorontsov. 1975. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Soviet Physics Uspekhi 17.

  46. Braginsky, V.B. et al. 1974. An upper limit on the density of gravitational radiation of extraterrestrial origin. Sov. Phys. JETP 39: 387–392.

    ADS  Google Scholar 

  47. Bronzini, F. et al. 1985. An experimental apparatus for studying the background of gravitational wave antennas. Nuovo Cimento C 8: 300–319.

    Article  ADS  Google Scholar 

  48. Brustein, R. and others. 1995. Relic Gravitational Waves from String Cosmology. Phys. Rev. Lett. B 361: 45–51.

    Article  ADS  MathSciNet  Google Scholar 

  49. Carelli, P. et al. 1975. Preliminary Results on the Operation of a 2270 kg Cryogenic Gravitational Wave Antenna With a Resonant Capacitive Transducer and a DC Squid Amplifier. Cryogenics, 406–408.

  50. Caves, C.M. et al. 1980. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. Rev. Mod. Phys. 52, 341.

    Article  ADS  Google Scholar 

  51. Collins, H. 2004. Gravity’s Shadow: The Search for Gravitational Waves. University of Chicago Press.

  52. De Rujula, A. and S.L. Glashow. 1984. Nuclearites:a novel form of cosmic radiation. Nature 312: 734–737.

    Article  ADS  Google Scholar 

  53. Douglas, D.H. et al. 1975. Two-Detector-Coincidence Search for Burst of Gravitational Radiation. Phys. Rev. Lett. 35: 480–483.

    Article  ADS  Google Scholar 

  54. Drever, R.W.P. et al. 1973. Search for Short Bursts of Gravitational Radiation. Nature 246: 340–344.

    Article  ADS  Google Scholar 

  55. Enke, H. et al. 1986. A recent coincidence experiment of gravitational waves with long baseline. Chinese Phys. Lett. 3: 529–532.

    Article  Google Scholar 

  56. EXPLORER. 2010. http://www.lnf.infn.it/esperimenti/rog/frame˙explorer.htm.

  57. Ferrari, V. and others. 1982. Search For Correlations Between The University Of Maryland And The University Of Rome Gravitational Radiation Antennas. Phys. Rev. D 25: 2471–2486.

    Article  ADS  Google Scholar 

  58. Forward, L. 1978. Wide Band Laser Interferometer Gravitational Radiation Experiment. Phys. Rev. D 17: 379–390.

    Article  ADS  Google Scholar 

  59. Fuligni, F. and V. Iafolla. 1983. Results of measurements on a harmonic oscillator using a back-action-evading scheme. Third Marcel Grossmann Meeting B: 1451–1453.

  60. Galeotti P. and G. Pizzella. 2016. New analysis for the correlation between gravitational waves and neutrino detectors during SN1987A, add the proper reference Eur. Phys. J. C 76: 426.

    Article  ADS  Google Scholar 

  61. Geng, Z.K. et al. 1995. Operation of the ALLEGRO Detector at LSU. World Scientific, Singapore.

  62. Gibbons, G.W. and S.W. Hawking. 1971. Theory of the detection of short bursts of gravitational radiation. Phys. Rev. D 4: 2191–2197.

    Article  ADS  Google Scholar 

  63. Grassi Strini, A. and others. 1980. Excitation of resonant oscillations in a solid bar by 30 MeV protons. J. Appl. Phys. 51: 948.

    Article  ADS  Google Scholar 

  64. Heng, I.S. et al. 1996. Long term operation of a niobium resonant bar gravitational wave antenna. Phys. Lett. A 218: 190–196.

    Article  ADS  Google Scholar 

  65. Hirakawa, H. and K. Narihara. 1975. Search for Gravitational Radiation at 145 Hz. Phys. Rev. Lett. 35: 330–334.

    Article  ADS  Google Scholar 

  66. Hirakawa, H. et al. 1978. Search for gravitational radiation from the Crab pulsar. Phys. Rev. D 17: 1919–1923.

    Article  ADS  Google Scholar 

  67. Hulse, R.A. and J.H. Taylor. 1975. Discovery of a pulsar in a binary system. Astrophys. J 195, L51–L53.

    Article  ADS  Google Scholar 

  68. Kennefick, D. 1997. Controversies in the history of the radiation reaction problem in general relativity. e-Print: gr-qc/9704002: 33.

  69. Lee, N. et al. 1976. Gravitational-radiation-detector observations in 1973 and 1974. Phys. Rev. D 14: 893–906.

    Article  ADS  Google Scholar 

  70. Levine, J.L. and B.L. Garwin. 1974. New Negative Result for Gravitational Wave Detection, and Comparison with Reported Detection. Phys. Rev. Lett. 33: 794–797.

    Article  ADS  Google Scholar 

  71. Liu, G. and B. Barish. 1988. Nuclearite flux limit from gravitational-wave detectors. Phys. Rev. Lett. 61: 271–274.

    Article  ADS  Google Scholar 

  72. Loinger, A. and T. Marsico. 2016. A detailed computation of LIGO’s statements on the 150914-signal. https://www.researchgate.net/ 301542915.

  73. Maeder, D.G. 1972. On a mechanical matching condition related to the detection limit for gravitational radiation. J. Phys. A. 5.

  74. Mauceli, E. 1997. Data analysis of the ALLEGRO GW detector. Ph.D. Thesis (Louisiana State University).

  75. Mauceli, E. et al. 1996. The Allegro gravitational wave detector: Data acquisition and analysis. Phys. Rev. D 54: 1264–1275.

    Article  ADS  Google Scholar 

  76. McHugh, M. et al. 2000. The ALLEGRO gravitational wave detectort. Int. J. Mod. Phys. D 9: 229.

    Article  ADS  Google Scholar 

  77. McHugh, M. et al. 2005. Calibration of the ALLEGRO resonant detector. Classical and Quantum Gravity 22: 174–181.

    Article  Google Scholar 

  78. Modena, I. and G. Pizzella. 2006. Coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 1998, during the activities of the black hole candidate XTE J1550-564 and the magnetar SGR1900+14. Int. J. Mod. Phys. D 15: 485–491.

    Article  ADS  MATH  Google Scholar 

  79. Modestino, G. and G. Pizzella. 2011. SGR 1806-20 and the gravitational wave detectors EXPLORER and NAUTILUS. Phys. Rev. D 83: 062004.

    Article  ADS  Google Scholar 

  80. Moss, G.E. et al. 1971. Photon-Noise-Limited Laser Transducer for Gravitational Antenna. Applied Optics 10: 2495–2498.

    Article  ADS  Google Scholar 

  81. Nagashima, Y. et al. 1988. Composite antennas for low-frequency gravitational radiation. Rev. Sci. Instrum. 59: 112–114.

    Article  ADS  Google Scholar 

  82. NAUTILUS. 2016. http://www.lnf.infn.it/esperimenti/rog/frame˙nautilus.htm.

  83. Olde, K. et al. 1979. Search for gravitational radiation from the Crab pulsar. Phys. Rev. D 20: 2480–2483.

    Article  ADS  Google Scholar 

  84. Owa, S. et al. 1986. Cryogenic detector for gravitational radiation from the Crab pulsar. MGM4, Elsevier Science Publishers B.V.

  85. Pallottino, G.V. and G. Pizzella. 1981. Matching of Transducers to Resonant Gravitational Wave Antennas. Nuovo Cimento C4 4: 237–283.

    Article  ADS  Google Scholar 

  86. Papoulis, A. 1965. Probability, Random variables and stochastic process. McGrow-Hill Book Co., New York.

  87. Pizzella, G. 1975. Gravitational-Radiation Experiments. Rivista del Nuovo Cimento 5: 369–397.

    Article  ADS  Google Scholar 

  88. Pizzella, G. 1984. The Search for Gravitational Waves. Phys. Bull. 35: 4–8.

    Article  Google Scholar 

  89. Pizzella, G. 1990. Quattro episodi. Sapere, Ed. Dedalo.

  90. Pizzella, G. 2006. Coincidences between GWs detectors EXPLORER and NAUTILUS in 1998, 2001, 2003 and 2004. The Eleventh Marcel Grossmann Meeting, Berlin.

  91. Preparata, G. 1990. Superradiance effect in a gravitational antenna. Mod. Phys. Lett. A 5: 1–5.

    Article  ADS  Google Scholar 

  92. Rapagnani, P. 1982. Development at 4.2 K of a capacitive resonant transducer for gravitational wave antennas. Il Nuovo Cimento C 5: 385–408.

    Article  ADS  Google Scholar 

  93. Ronga, F. et al. 2009. Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER and comparison with the direct measurements with an aluminum superconductive bar. Nucl. Phys. Proc. Suppl. 190: 44–51.

    Article  ADS  Google Scholar 

  94. Ruffini, R. and J.A. Wheeler. 1969. Relativistic Cosmology and Space Plattforms. Moore, A.F., Hardy, V., eds.

  95. Solomonson, N. et al. 1994. Construction and performance of a low noise inductive transducer for the Louisiana State University gravitational wave detector. Rev. Sci. Instrum. 65: 174–181.

    Article  ADS  Google Scholar 

  96. Suzuki, T. 1995. Search for continuous gravitational wave from pulsars with resonant detector. World Scientific, Singapore.

  97. Taylor, J.H. and J.M. Weisberg. 1982. A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar 1913+16. Astrophys. J 253: 908–920.

    Article  ADS  Google Scholar 

  98. Thorne, K.S. and others 1978. Quantum Nondemolition Measurements of Harmonic Oscillators. Phys. Rev. Lett. 40.

  99. Thorne, K.S. 1987. Gravitational Radiation, in 300 years of Gravitation, edited by S.W. Hawking, W. Israel. Cambridge University Press, United Kingdom.

  100. Tobar, M.E. et al. 1995. The University of Western Australia’s Resonant-bar Gravitational Wave Experiment. Aust. J. Phys. 48: 1007–1025.

    Article  ADS  Google Scholar 

  101. Tobar, M.E. et al. 1999. Niobe: Improved noise temperature and back ground noise suppression. AIP Conf. Proc. 523, Pasadena.

  102. Unruh, W.G. 1979. Quantum nondemolition and gravity = wave detection. Phys. Rev. D 19.

  103. Weber, J. 1961. General Relativity and Gravitational Waves. Interscience, New York.

  104. Weber, J. 1968. Gravitational-Wave-Detector Events. Phys. Rev. Lett. 20: 1307–1308.

    Article  ADS  Google Scholar 

  105. Weber, J. 1969. Evidence for discovery of gravitational radiation. Phys. Rev. Lett. 22: 1320–1324.

    Article  ADS  Google Scholar 

  106. Weber, J. 1984. Gravitons, neutrinos, and antineutrinos. Found. Phys. 14: 1185.

    Article  ADS  Google Scholar 

  107. Weinberg, S. 1972. Gravitation and Cosmology. John Wiley & Sons.

  108. Weiss, R. 1972. Electronically Coupled Broadband Gravitational Antenna. Quarterly Progress Report, Research Laboratory of Electronics (MIT) 105: 54.

    Google Scholar 

  109. Will, G.M. 1981. Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge, United Kingdom.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pizzella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzella, G. Birth and initial developments of experiments with resonant detectors searching for gravitational waves. EPJ H 41, 267–302 (2016). https://doi.org/10.1140/epjh/e2016-70036-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2016-70036-8

Navigation