Skip to main content
Log in

Surrogate-Assisted Reliability Optimisation of an Aircraft Wing with Static and Dynamic Aeroelastic Constraints

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This paper presents a numerical strategy for reliability-based design optimisation of an aircraft wing structure using a surrogate-assisted approach. The design problem is set to minimise aircraft wing mass subject to structural and aeroelastic constraints, while design variables are structural dimensions. The problem has uncertainties in the material properties. The Kriging model is used for estimating the values of design functions. Two strategies of sampling technique are used, i.e., optimum Latin hypercube sampling (OLHS) with and without infill sampling. Uncertainty quantification is achieved by means of optimum normal distribution Latin hypercube sampling. The original design problem is converted to be a multiobjective optimisation problem. Optimum results show that OLHS with infill sampling gives a more accurate surrogate model; however, OLHS without infill sampling results in the better design solutions based on actual function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nantasenee S, Sleesongsom S, Bureerat S (2009) Comparing flutter analysis programs for low speed air-vehicles. In: Proceedings of the 23rd conference of mechanical engineering network of Thailand, Chiang Mai, Thailand, AME-004374

  2. Sleesongsom S, Nanthasene S, Benjapiyaporn J, Bureerat S (2010) Adaptive wing by using a W-spar concept. In: TSME conference system, TSME international conference on mechanical engineering, Ubon Ratchathani, Thailand

  3. Sleesongsom S, Bureerat S (2011) Effect of actuating forces on aeroelastic characteristics of a morphing aircraft wing. Appl Mech Mater 52–54:308–317. https://doi.org/10.4028/www.scientific.net/AMM.52-54.308

    Article  Google Scholar 

  4. Sleesongsom S, Bureerat S (2013) New conceptual design of aeroelastic wing structures by multi-objective optimization. Eng Optim 45:107–122. https://doi.org/10.1080/0305215X.2012.661728

    Article  MathSciNet  Google Scholar 

  5. Sleesongsom S, Bureerat S (2013) Aerodynamic reduced-order modeling without static correction requirement based on body vortices. J Eng 2013:1–6. https://doi.org/10.1155/2013/326496

    Article  Google Scholar 

  6. Sleesongsom S, Bureerat S, Tai K (2013) Aircraft morphing wing design by using partial topology optimization. Struct Multidiscipl Optim 48:1109–1128. https://doi.org/10.1007/s00158-013-0944-3

    Article  MathSciNet  Google Scholar 

  7. Sleesongsom S, Bureerat S (2015) Morphing wing structural optimization using opposite-based population-based incremental learning and multigrid ground elements. Math Probl Eng 2015:1–16. https://doi.org/10.1155/2015/730626

    Article  Google Scholar 

  8. Sleesongsom S, Winyangkul S, Bureerat S (2015) Flutter analysis of aircraft wing using an alternative reduced-order modeling method. In: International conference on power electronics and energy engineering, pp 98–101

  9. Georgiou G, Vio GA, Cooper JE (2014) Aeroelastic tailoring and scaling using bacterial foraging optimisation. Struct Multidiscipl Optim 50:81–99. https://doi.org/10.1007/s00158-013-1033-3

    Article  MathSciNet  Google Scholar 

  10. Beran P, Stanford B (2013) Uncertainty quantification in aeroelasticity. Springer, Cham, pp 59–103

    MATH  Google Scholar 

  11. Kurdi M, Lindsley N, Beran P (2007) Uncertainty quantification of the Goland+ wing’s flutter boundary. In: AIAA Atmospheric flight mechanics conference and exhibit. American Institute of Aeronautics and Astronautics, Reston, Virigina

  12. Manan A, Cooper J (2009) Design of composite wings including uncertainties: a probabilistic approach. J Aircr 46:601–607. https://doi.org/10.2514/1.39138

    Article  Google Scholar 

  13. Scarth C, Cooper JE, Weaver PM, Silva GHC (2014) Uncertainty quantification of aeroelastic stability of composite plate wings using lamination parameters. Compos Struct 116:84–93. https://doi.org/10.1016/J.COMPSTRUCT.2014.05.007

    Article  Google Scholar 

  14. Cook RG, Wales C, Gaitonde A et al (2018) Uncertainty quantification of aeroelastic systems with structural or aerodynamic nonlinearities. In: Applied aerodynamics conference. American Institute of Aeronautics and Astronautics, Reston, Virginia

  15. Scarth C, Cooper JE (2018) Reliability-based aeroelastic design of composite plate wings using a stability margin. Struct Multidiscipl Optim 57:1695–1709. https://doi.org/10.1007/s00158-017-1838-6

    Article  Google Scholar 

  16. Yu Y, Wang Z, Guo S (2017) Efficient method for aeroelastic tailoring of composite wing to minimize gust response. Int J Aerosp Eng 2017:1–12. https://doi.org/10.1155/2017/1592527

    Article  Google Scholar 

  17. Wu X, Zhang W, Song S (2017) Uncertainty quantification and sensitivity analysis of transonic aerodynamics with geometric uncertainty. Int J Aerosp Eng 2017:1–16. https://doi.org/10.1155/2017/8107190

    Article  Google Scholar 

  18. Borello F, Cestino E, Frulla G (2010) Structural uncertainty effect on classical wing flutter characteristics. J Aerosp Eng 23:327–338. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000049

    Article  Google Scholar 

  19. Papageorgiou A, Tarkian M, Amadori K, Ölvander J (2018) Multidisciplinary design optimization of aerial vehicles: a review of recent advancements. Int J Aerosp Eng 2018:1–21. https://doi.org/10.1155/2018/4258020

    Article  Google Scholar 

  20. Yin H, Yu D, Xia B (2018) Reliability-based topology optimization for structures using fuzzy set model. Comput Methods Appl Mech Eng 333:197–217. https://doi.org/10.1016/j.cma.2018.01.019

    Article  MathSciNet  MATH  Google Scholar 

  21. Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81:23–69. https://doi.org/10.1016/S0951-8320(03)00058-9

    Article  Google Scholar 

  22. Zhao H, Gao Z, Xu F, Zhang Y (2018) Correction to: Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-018-9264-5

    Article  Google Scholar 

  23. Chatterjee T, Chakraborty S, Chowdhury R (2019) A critical review of surrogate assisted robust design optimization. Arch Comput Methods Eng 26:245–274. https://doi.org/10.1007/s11831-017-9240-5

    Article  MathSciNet  Google Scholar 

  24. Hui F, Weiji L (2008) An efficient method for reliability-based multidisciplinary design optimization. Chin J Aeronaut 21:335–340. https://doi.org/10.1016/S1000-9361(08)60044-8

    Article  Google Scholar 

  25. Pholdee N, Bureerat S (2015) An efficient optimum Latin hypercube sampling technique based on sequencing optimisation using simulated annealing. Int J Syst Sci 46:1780–1789. https://doi.org/10.1080/00207721.2013.835003

    Article  MATH  Google Scholar 

  26. Neufeld DJ (2010) Multidisciplinary aircraft conceptual design optimization considering fidelity uncertainties

  27. Techasen T, Wansasueb K, Panagant N et al (2019) Simultaneous topology, shape, and size optimization of trusses, taking account of uncertainties using multi-objective evolutionary algorithms. Eng Comput 35:721–740. https://doi.org/10.1007/s00366-018-0629-z

    Article  Google Scholar 

  28. Park S, Choi S, Sikorsky C, Stubbs N (2004) Efficient method for calculation of system reliability of a complex structure. Int J Solids Struct 41:5035–5050. https://doi.org/10.1016/j.ijsolstr.2004.04.028

    Article  MATH  Google Scholar 

  29. Yu Y, Lyu Z, Xu Z, Martins JRRA (2018) On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerosp Sci Technol 75:183–199. https://doi.org/10.1016/j.ast.2018.01.016

    Article  Google Scholar 

  30. Kefal A, Oterkus E, Tessler A, Spangler JL (2016) A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng Sci Technol Int J 19:1299–1313. https://doi.org/10.1016/J.JESTCH.2016.03.006

    Article  Google Scholar 

  31. Katz J, Plotkin A (1991) Low-speed aerodynamics: from wing theory to panel methods. McGraw-Hill, Singapore

    Google Scholar 

  32. Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircr 9:189–191. https://doi.org/10.2514/3.44330

    Article  Google Scholar 

  33. Zuo Y, Chen P, Fu L et al (2015) Advanced aerostructural optimization techniques for aircraft design. Math Probl Eng 2015:1–12. https://doi.org/10.1155/2015/753042

    Article  Google Scholar 

  34. Lerner E, Markowitz J (1979) An efficient structural resizing procedure for meeting static aeroelastic design objectives. J Aircr 16:65–71. https://doi.org/10.2514/3.58486

    Article  Google Scholar 

  35. Botez R, Doin A, Cotoi I (2002) Method for flutter aeroservoelastic open loop analysis. In: 5th International Symposium on fluid structure international, aeroeslasticity, and flow induced vibration and noise. ASME, pp 547–558

  36. Morris MD, Mitchell TJ (1995) Exploratory designs for computational experiments. J Stat Plan Inference 43:381–402. https://doi.org/10.1016/0378-3758(94)00035-T

    Article  MATH  Google Scholar 

  37. Panagant N, Bureerat S (2018) Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng Optim 50:1645–1661. https://doi.org/10.1080/0305215X.2017.1417400

    Article  MathSciNet  Google Scholar 

  38. Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling. Wiley, Hoboken

    Book  Google Scholar 

  39. Zhang Qingfu, Li Hui (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  40. Mirjalili S, Saremi S, Mirjalili SM, dos Coelho LS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119. https://doi.org/10.1016/J.ESWA.2015.10.039

    Article  Google Scholar 

  41. Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans Evol Comput 18:602–622. https://doi.org/10.1109/TEVC.2013.2281534

    Article  Google Scholar 

  42. Pholdee N, Bureerat S (2013) Hybridisation of real-code population-based incremental learning and differential evolution for multiobjective design of trusses. Inf Sci (Ny) 223:136–152. https://doi.org/10.1016/j.ins.2012.10.008

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support provided by King Mongkut’s Institute of Technology Ladkrabang, the Thailand Research Fund (RTA6180010), and the Post-doctoral Program from Research Affairs, Graduate School, KhonKaen University (58225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sleesongsom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wansaseub, K., Sleesongsom, S., Panagant, N. et al. Surrogate-Assisted Reliability Optimisation of an Aircraft Wing with Static and Dynamic Aeroelastic Constraints. Int. J. Aeronaut. Space Sci. 21, 723–732 (2020). https://doi.org/10.1007/s42405-019-00246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-019-00246-6

Keywords

Navigation