Skip to main content
Log in

Szegő Condition and Scattering for One-Dimensional Dirac Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

We prove the existence of modified wave operators for one-dimensional Dirac operators whose spectral measures belong to the Szegő class on the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is worth mentioning that the authors of [9] define canonical Hamiltonian systems and Weyl functions in a slightly different (but equivalent) way.

  2. It is worth mentioning that \(D_0 = -{\mathcal {D}}_0\) for the free Dirac operator \(D_0\) used in [6]. In particular, we have \(e^{it{\mathcal {D}}_0} = e^{-itD_0}\) for all \(t\in {\mathbb {R}}\).

References

  1. Bessonov, R.V., Denisov, S.A.: A spectral Szegő theorem on the real line. Preprint arXiv:1711.05671 (2017)

  2. Borichev, A., Sodin, M.: Weighted exponential approximation and non-classical orthogonal spectral measures. Adv. Math. 226(3), 2503–2545 (2011)

    Article  MathSciNet  Google Scholar 

  3. Christ, M., Kiselev, A.: Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. Geom. Funct. Anal. 12(6), 1174–1234 (2002)

    Article  MathSciNet  Google Scholar 

  4. de Branges, L.: Some Hilbert spaces of entire functions. II. Trans. Am. Math. Soc. 99, 118–152 (1961)

    Article  MathSciNet  Google Scholar 

  5. de Branges, L.: Hilbert Spaces of Entire Functions. Prentice-Hall Inc., Englewood Cliffs (1968)

    MATH  Google Scholar 

  6. Denisov, S.A.: On the existence of wave operators for some Dirac operators with square summable potential. Geom. Funct. Anal. 14(3), 529–534 (2004)

    Article  MathSciNet  Google Scholar 

  7. Denisov, S.A.: Continuous analogs of polynomials orthogonal on the unit circle and Kreĭn systems. IMRS Int. Math. Res. Surv., pp. 1–148 (2006) Art. ID 54517

  8. Dym, H., McKean, H.P.: Gaussian Processes, Function Theory, and the Inverse Spectral Problem. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, Probability and Mathematical Statistics, vol. 31 (1976)

  9. Hassi, S., De Snoo, H., Winkler, H.: Boundary-value problems for two-dimensional canonical systems. Integr. Equ. Oper. Theory 36(4), 445–479 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kac, I.S., Krein, M.G.: On the spectral functions of the string. Supplement II to the Russian edition of F.V. Atkinson, Discrete and continuous boundary problems, 1968. English translation: Am. Math. Soc. Transl. (2) 103, 19–102 (1974)

  11. Khrushchev, S.: Schur’s algorithm, orthogonal polynomials, and convergence of Wall’s continued fractions in \(L^2(T)\). J. Approx. Theory 108(2), 161–248 (2001)

    Article  MathSciNet  Google Scholar 

  12. Koosis, P.: The logarithmic integral. I, vol. 12 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1998). Corrected reprint of the 1988 original

  13. Krein, M.G.: On a basic approximation problem of the theory of extrapolation and filtration of stationary random processes. Doklady Akad. Nauk SSSR (N.S.) 94, 13–16 (1954)

    MathSciNet  MATH  Google Scholar 

  14. Krein, M.G.: Continuous analogues of propositions on polynomials orthogonal on the unit circle. Dokl. Akad. Nauk SSSR (N.S.) 105, 637–640 (1955)

    MathSciNet  Google Scholar 

  15. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac operators, vol. 59 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991). Translated from the Russian

  16. Reed, M., Simon, B.: Methods of modern mathematical physics. III. Academic Press, New York (1979)

    MATH  Google Scholar 

  17. Remling, C.: Spectral Theory of Canonical Systems. De Gruyter Studies in Mathematics Series Walter De Gruyter GmbH (2018)

  18. Romanov, R.: Canonical systems and de Branges spaces. preprint arXiv:1408.6022 (2014)

  19. Teplyaev, A.: A note on the theorems of M. G. Krein and L. A. Sakhnovich on continuous analogs of orthogonal polynomials on the circle. J. Funct. Anal., 226(2):257–280 (2005)

  20. Winkler, H.: The inverse spectral problem for canonical systems. Integr. Equ. Oper. Theory 22(3), 360–374 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Bessonov.

Additional information

Communicated by Sergey Denisov.

The author is supported by RFBR Grant mol_a_dk 16-31-60053.

Appendices

Appendix I

Here we prove Lemmas 2.22.3, and 2.4 following the ideas of [1].

Proof of Lemma 2.2

Assertions (a), (b) of Lemma 2.2 are the formulas (2.13), (2.14) in [1], respectively. \(\square \)

Proof of Lemma 2.3

A straightforward calculation shows that the Weyl function of the constant nontrivial Hamiltonian

$$\begin{aligned} {\mathcal {H}}= \begin{pmatrix}c_1 &{}\quad c \\ c &{}\quad c_2\end{pmatrix} \end{aligned}$$

equals \(m = i c_{1}^{-1}\sqrt{c_1 c_2 - c^2} + c/c_1\). Now let \({\mathcal {H}}\) be an arbitrary singular nontrivial Hamiltonian, and let \({\widehat{{\mathcal {H}}}}_r\) be defined by (16). Then the Weyl function of \(({\hat{{\mathcal {H}}}}_r)_r\) is

$$\begin{aligned} m_{({\hat{{\mathcal {H}}}}_r)_r} = i {\mathcal {I}}_{{\mathcal {H}}}(r) + {\mathcal {R}}_{{\mathcal {H}}}(r). \end{aligned}$$
(57)

Hence, we have \({\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_{r}}(r) = \log c_{1}^{-1}\sqrt{c_1 c_2 - c^2} = - \log c_1 = \log {\mathcal {I}}_{\mathcal {H}}(r)\). Next, let \(F_{r}\), \(G_r\) and \({\hat{F}}_{r}\), \({\hat{G}}_{r}\) be the functions from Lemma 2.2 for the Hamiltonians \({\mathcal {H}}\) and \({\hat{{\mathcal {H}}}}_r\), respectively. Note that \(F_{r}(i) = {\hat{F}}_{r}(i)\), \(G_{r}(i) = {\hat{G}}_{r}(i)\) by construction and formula (57). It follows from assertion (a) of Lemma 2.2 that \({\hat{m}}_r(i) = m_0(i)\); that is,

$$\begin{aligned} {\mathcal {I}}_{{\widehat{{\mathcal {H}}}}_r}(0) = {\mathcal {I}}_{{\mathcal {H}}}(0), \qquad {\mathcal {R}}_{{\widehat{{\mathcal {H}}}}_r}(0) = {\mathcal {R}}_{{\mathcal {H}}}(0). \end{aligned}$$

As in the proof of Lemma 2.5 in [1], we have

$$\begin{aligned} {\mathcal {J}}_{{\mathcal {H}}}(r) = {\mathcal {J}}_{{\mathcal {H}}}(0) - 2\xi _{{\mathcal {H}}}(r) + 2\log |F_r(i)|, \end{aligned}$$
(58)

where \(\xi _{{\mathcal {H}}}: r \mapsto \int _{0}^{r}\sqrt{\det {\mathcal {H}}(t)}\,\mathrm{d}t\). Similarly,

$$\begin{aligned} {\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_r}(r) = {\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_r}(0) - 2\xi _{{\widehat{{\mathcal {H}}}}_r}(r) + 2\log |{\hat{F}}_r(i)|. \end{aligned}$$

Since \(\xi _{{\mathcal {H}}}(r) = \xi _{{\widehat{{\mathcal {H}}}}_r}(r)\) and \({\hat{F}}_r(i) = F_r(i)\), we have

$$\begin{aligned} {\mathcal {K}}_{{\mathcal {H}}}(r)&= \log {\mathcal {I}}_{{\mathcal {H}}}(r) - {\mathcal {J}}_{{\mathcal {H}}}(r) = {\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_r}(r) - {\mathcal {J}}_{{\mathcal {H}}}(r),\\&= {\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_r}(0) - {\mathcal {J}}_{{\mathcal {H}}}(0) = {\mathcal {J}}_{{\widehat{{\mathcal {H}}}}_r}(0) - \log {\mathcal {I}}_{{\widehat{{\mathcal {H}}}}_r}(0) + \log {\mathcal {I}}_{{\mathcal {H}}}(0) - {\mathcal {J}}_{{\mathcal {H}}}(0), \\&=-{\mathcal {K}}_{{\widehat{{\mathcal {H}}}}_r}(0) + {\mathcal {K}}_{{\mathcal {H}}}(0). \end{aligned}$$

The last formula can be rewritten in the form \({\mathcal {K}}_{{\mathcal {H}}}(0) = {\mathcal {K}}_{{\mathcal {H}}}(r) + {\mathcal {K}}_{{\widehat{{\mathcal {H}}}}_r}(0)\). Since the functions \({\mathcal {K}}_{{\mathcal {H}}}\), \({\mathcal {K}}_{{\widehat{{\mathcal {H}}}}_r}\) are nonnegative, we see that \({\mathcal {K}}_{{\mathcal {H}}}\) is nonincreasing. This fact and the semi-continuity of logarithmic integrals implies \(\lim _{r \rightarrow +\infty } {\mathcal {K}}_{{\widehat{{\mathcal {H}}}}_r}(0) = {\mathcal {K}}_{{\mathcal {H}}}(0)\), or, equivalently, \(\lim _{r \rightarrow +\infty } {\mathcal {K}}_{{\mathcal {H}}}(r) = 0\), see details in Lemma 4.1 of [1]. \(\square \)

Proof of Lemma 2.4

Assume first that the Hamiltonian \({\mathcal {H}}= \left( {\begin{matrix} h_1 &{}\quad h\\ h &{}\quad h_2\\ \end{matrix}} \right) \) is continuously differentiable on \({\mathbb {R}}_+\). As in the proof of Lemma 2.7 in [1], formula (5) yields

$$\begin{aligned} \left. \left( \!{\begin{matrix}\Theta ^+(r,i)'&{}\quad \Phi ^+(r,i)'\\ \Theta ^-(r,i)'&{}\quad \Phi ^-(r,i)'\end{matrix}}\!\right) \right| _{r=0} = \left( {\begin{matrix}ih(0)&{}\quad ih_2(0)\\ -ih_1(0)&{}\quad -ih(0)\end{matrix}}\right) . \end{aligned}$$
(59)

Then (58) and the initial condition \(M(0,i) = \left( {\begin{matrix} 1 &{} 0\\ 0 &{} 1\\ \end{matrix}} \right) \) give

$$\begin{aligned} {\mathcal {J}}_{{\mathcal {H}}}'(0)&= -2\xi '(0) + 2 \left. \mathrm{Re}\left( \frac{\Theta ^+(r,i)' +m'_r(i)\Theta ^-(r,i) + m_r(i)\Theta ^-(r,i)'}{\Theta ^+(r,i) +m_r(i)\Theta ^-(r,i)}\right) \right| _{r=0},\\&= -2\xi '(0) + 2\mathrm{Re}(ih(0) - im_0(i)h_1(0)),\\&= -2\xi '(0) + 2 h_1(0) {\mathcal {I}}_{{\mathcal {H}}}(0), \end{aligned}$$

where the derivatives are taken with respect to r. The same relation for the Hamiltonian \({\mathcal {H}}_r\) in place of \({\mathcal {H}}\) shows that \({\mathcal {J}}'_{{\mathcal {H}}}(r) = -2\xi '_{{\mathcal {H}}}(r) + 2 h_1(r) {\mathcal {I}}_{{\mathcal {H}}}(r)\) for all \(r > 0\). Similarly, differentiating relation \(m_0(i) = \frac{G_r(i)}{F_r(i)}\) from Lemma 2.2 at \(r = 0\) and using (59), we obtain \(0 = ih_2(0) + m'_0(i) - i m_0(i)h(0) - m_0(i)(ih(0) - i m_0(i)h_1(0))\). As before, this gives

$$\begin{aligned} 0 = ih_2(r) + m'_r(i) - i m_r(i)h(r) - m_r(i)(ih(r) - i m_r(i)h_1(r)) \end{aligned}$$
(60)

for all \(r > 0\). By construction, we have \(m_r(i) = i{\mathcal {I}}_{{\mathcal {H}}}(r) + {\mathcal {R}}_{\mathcal {H}}(r)\). Taking imaginary and real parts in (60), we obtain

$$\begin{aligned} 0&=h_2 + {\mathcal {I}}'_{\mathcal {H}}- 2{\mathcal {R}}_{\mathcal {H}}h + {\mathcal {R}}_{\mathcal {H}}^2 h_1 - {\mathcal {I}}_{{\mathcal {H}}}^{2}h_1,\\ 0&={\mathcal {R}}'_{{\mathcal {H}}}+2{\mathcal {I}}_{{\mathcal {H}}}h - 2{\mathcal {I}}_{\mathcal {H}}{\mathcal {R}}_{\mathcal {H}}h_1, \end{aligned}$$

respectively. These two relations, together with the definition of the entropy function \({\mathcal {K}}_{{\mathcal {H}}} = \log {\mathcal {I}}_{{\mathcal {H}}} - {\mathcal {J}}_{\mathcal {H}}\) and the formula \({\mathcal {J}}'_{{\mathcal {H}}} = -2\xi '_{{\mathcal {H}}} + 2 h_1 {\mathcal {I}}_{{\mathcal {H}}}\), imply the statement of the lemma in the case where \({\mathcal {H}}\) is smooth. The general case then follow as in the proof of Lemma 2.7 in [1]. \(\square \)

Appendix II

Proposition 2.5 stems from a general approximation theory developed by M. Riesz and S. Mergelian, see, e.g., Section VI in [12]. For the reader’s convenience, we prove it below. Our approach is standard and has much in common with Section 5.2 in [2]. We will use several known results, the first of which can be found in Section 3.G.2 of [12].

Theorem 7.1

Let g be analytic in \({\mathbb {C}}^+\), continuous up to \({\mathbb {R}}\), and such that \(\log g \cdot (x^2+1)^{-1} \in L^1({\mathbb {R}})\). Suppose that \(\log |g(z)| \leqslant c(|z|+1)\) for a constant c and all \(z \in {\mathbb {C}}^+\). Then

$$\begin{aligned} \log |g(z)| \leqslant A\mathrm{Im}z + \frac{1}{\pi }\int _{{\mathbb {R}}}\log |g(x)|\frac{\mathrm{Im}z}{|x-z|^{2}}\,\mathrm{d}x, \qquad z \in {\mathbb {C}}^+, \end{aligned}$$

where \(A = \limsup _{y \rightarrow +\infty }\frac{\log |g(iy)|}{y}\).

De Branges spaces admit the following “axiomatic” description, see Section 23 in [5].

Theorem 7.2

For every Hermite–Biehler function E, the space \({\mathcal {B}}(E)\) has the following properties:

\((A_1)\):

whenever f is in the space and has a nonreal zero w, the function \(\frac{z - {\bar{w}}}{z - w}f\) is in the space and has the same norm as f;

\((A_2)\):

for every nonreal number w, the evaluation functional \(f \mapsto f(w)\) is continuous;

\((A_3)\):

the function \(f^\sharp \) belongs to the space whenever f belongs to the space and it always has the same norm as f.

Conversely, for every Hilbert space of entire functions \({\mathcal {B}}\) satisfying \((A_1)\)-\((A_3)\), there exists a Hermite–Biehler function E such that \({\mathcal {B}} = {\mathcal {B}}(E)\).

A Hermite–Biehler function E is called regular if \(\int _{{\mathbb {R}}}\frac{1}{1+t^2}\frac{\mathrm{d}t}{|E(t)|^2} < \infty \). It is easy to check that a Hermite–Biehler function E is regular if and only if for every \(w \in {\mathbb {C}}\) and \(F \in {\mathcal {B}}(E)\), we have \(\frac{F - F(w)}{z - w} \in {\mathcal {B}}(E)\). De Branges spaces satisfying this property are called regular. For every Hamiltonian \({\mathcal {H}}\) on \({\mathbb {R}}_+\), the de Branges spaces from its chain \(\{{\mathcal {B}}_r\}_{r \in {\mathcal {M}}}\) are regular, see, e.g., Section 3 in [18].

If \(E_1\) and \(E_2\) are regular Hermite–Biehler functions without zeroes on \({\mathbb {R}}\), then \(E_1/E_2\) is a function of bounded type in \({\mathbb {C}}^+\) (that is, \(E_1/E_2\) is a ratio of two functions in \(H^2({\mathbb {C}}^+)\)). The next theorem is usually referred to as the de Branges ordering theorem, see Section 35 in [5].

Theorem 7.3

Let \({\mathcal {B}}(E_1)\) and \({\mathcal {B}}(E_2)\) be given spaces which are contained isometrically in a space \(L^2(\mu )\). If \(E_1/E_2\) is a function of bounded type in the upper half-plane and has no real zeroes or singularities, then either \({\mathcal {B}}(E_1)\) contains \({\mathcal {B}}(E_2)\) or \({\mathcal {B}}(E_2)\) contains \({\mathcal {B}}(E_1)\).

An entire function f is said to have a finite exponential type if there exists the finite upper limit

$$\begin{aligned} \mathop {\mathrm {type}}\nolimits f = \limsup _{|z| \rightarrow \infty }\frac{\log |f(z)|}{|z|}. \end{aligned}$$

Given a de Branges space \({\mathcal {B}}\), put \(\mathop {\mathrm {type}}\nolimits {\mathcal {B}}= \sup \{\mathop {\mathrm {type}}\nolimits f: \; f \in {\mathcal {B}}\}\). The following theorem goes back to Krein [13] and de Branges [4]; its short proof can be found in Section 6 of [18].

Theorem 7.4

Let \({\mathcal {H}}\) be a nontrivial Hamiltonian on \({\mathbb {R}}_+\), and let \(\{{\mathcal {B}}_r\}_{r \in {\mathcal {M}}}\) be its chain of de Branges spaces. Then \(\mathop {\mathrm {type}}\nolimits ({\mathcal {B}}_r) = \int _{0}^{r}\sqrt{\det {\mathcal {H}}(\tau )}\,\mathrm{d}\tau \) for every \(r \in {\mathcal {M}}\).

Proof of Proposition 2.5

Consider an element \(h \in L^2(\mu )\) orthogonal to all functions in \({\mathcal {E}}_s\) and such that \(\Vert h\Vert _{L^2(\mu )} = 1\). For every \(f \in {\mathcal {E}}_s\) and \(\lambda \in {\mathbb {C}}\), the function \(z \mapsto \frac{f - f(\lambda )}{z - \lambda }\) belongs to \({\mathcal {E}}_s\); hence

$$\begin{aligned} \int _{{\mathbb {R}}}\frac{f(x) - f(\lambda )}{x - \lambda }\overline{h(x)}\,\mathrm{d}\mu (x) = 0, \qquad \lambda \in {\mathbb {C}}. \end{aligned}$$
(61)

Define the function \(H :\lambda \mapsto \int _{{\mathbb {R}}}\frac{\overline{h(x)}}{x-\lambda }\,\mathrm{d}\mu (x)\) on \({\mathbb {C}}^+\). Relation (61) can be rewritten in the form

$$\begin{aligned} f(\lambda ) = \frac{1}{H(\lambda )}\int _{{\mathbb {R}}}\frac{f(x)\overline{h(x)}}{x-\lambda }\,\mathrm{d}\mu (x), \qquad \lambda \in {\mathbb {C}}^{+}, \quad H(\lambda )\ne 0. \end{aligned}$$
(62)

Observe that for all \(\lambda \in {\mathbb {C}}^+\) with \(\mathrm{Im}\lambda \geqslant 1\), we have

$$\begin{aligned} |H(\lambda )|^2 \leqslant \Vert h\Vert _{L^2(\mu )}^{2} \int _{{\mathbb {R}}}\frac{\mathrm{d}\mu (x)}{|x-\lambda |^2} \leqslant \int _{{\mathbb {R}}}\frac{\mathrm{d}\mu (x)}{x^2+1}. \end{aligned}$$

It follows that H is a bounded analytic function in the half-plane \(\{\lambda : \mathrm{Im}\lambda \geqslant 1\}\); hence

$$\begin{aligned} \int _{{\mathbb {R}}}\frac{\bigl |\log |H(x+i)|\bigr |}{x^2 + 1}\, \mathrm{d}x < \infty . \end{aligned}$$
(63)

Let us apply Theorem 7.1 to the function \({\tilde{f}}: z \mapsto f(z + i)\). This function is analytic in \({\mathbb {C}}^+\) and is continuous up to \({\mathbb {R}}\). Since f has a finite exponential type, we also have \(\log |{\tilde{f}}(z)| \leqslant c(|z|+1)\) for a constant c and all \(z \in {\mathbb {C}}^+\). Moreover, from (62) we see that \(|{\tilde{f}}(x)| \leqslant \Vert f\Vert _{L^2(\mu )}/|H(x+i)|\) for all \(x \in {\mathbb {R}}\); hence \(\log {\tilde{f}} \cdot (x^2+1)^{-1} \in L^1({\mathbb {R}})\). Theorem 7.1 and the last estimate imply

$$\begin{aligned} \log |{\tilde{f}}(z)| \nonumber&\leqslant s \mathrm{Im}z + \frac{1}{\pi }\int _{{\mathbb {R}}}\log \left( \frac{\Vert f\Vert _{L^2(\mu )}}{|H(x+i)|}\right) \frac{\mathrm{Im}z}{|x-z|^{2}}\,\mathrm{d}x,\\&\leqslant s \mathrm{Im}z + \log \Vert f\Vert _{L^2(\mu )} + \frac{1}{\pi }\int _{{\mathbb {R}}}\bigl |\log |H(x+i)|\bigr |\frac{\mathrm{Im}z}{|x-z|^{2}}\,\mathrm{d}x \end{aligned}$$
(64)

for all \(z \in {\mathbb {C}}^+\). Take \(a\geqslant 2\). For \(z \in {\mathbb {C}}^+\) with \(\mathrm{Im}z = a\), we get from (63), (64) the estimate \(|f(z)| \leqslant \Vert f\Vert _{L^2(\mu )}e^{c_{1}|z|^2}\), where the constant \(c_{1}\) depends only on a and H. A argument for the lower half-plane gives the estimate \(|f(z)| \leqslant \Vert f\Vert _{L^2(\mu )}e^{c_{1}|z|^2}\) for all z with \(\mathrm{Im}z = -a\). Let p be a polynomial such that \(\sinh (2c_1 z^2)/p\) is analytic and does not vanish in the strip \(\Pi _a = \{z: |\mathrm{Im}z| \leqslant a\}\). Then the Phragmén–Lindelöf principle for \(p{\tilde{f}}/ \sinh (2c_1 z^2)\) implies that \(|f(z)| \leqslant c_2\Vert f\Vert _{L^2(\mu )}e^{c_{2}|z|^2}\) for all \(z \in \Pi _a\) and a constant \(c_2\) depending only on a and H. In particular, the function f is bounded by \(c_{2}e^{4c_{2}}\Vert f\Vert _{L^2(\mu )}\) in the square \(\{z : |\mathrm{Re}z| \leqslant a, |\mathrm{Im}z| \leqslant a\}\). Next, for \(z \in {\mathbb {C}}^+\) such that \(\mathrm{Re}z = \mathrm{Im}z = y\), we have

$$\begin{aligned} \frac{\mathrm{Im}z}{|x-z|^{2}} \leqslant |z|\frac{L_y(x)}{x^2+1}, \qquad L_y(x) = \frac{x^2+1}{(x-y)^2 + y^2}, \qquad x \in {\mathbb {R}}. \end{aligned}$$

Note that \(\sup \{L_y(x): \, x \in {\mathbb {R}}, \, y>0\} < \infty \) and \(\lim _{y \rightarrow + \infty }L_y(x) = 0\) for every \(x \in {\mathbb {R}}\). From (64) we now see that for every \(\varepsilon > 0\), there exists a constant \(c_\varepsilon \) independent of f such that

$$\begin{aligned} |f(z)| \leqslant c_{\varepsilon }\Vert f\Vert _{L^2(\mu )}e^{(s+\varepsilon )|z|} \end{aligned}$$
(65)

for all \(z \in {\mathbb {C}}\) with \(|\mathrm{Re}z| = |\mathrm{Im}z|\). Using the Phragmén–Lindelöf principle once again, we conclude that for every \(\varepsilon >0\), relation (65) holds for all \(z \in {\mathbb {C}}\) and a new constant \(c_{\varepsilon }\) does not depend on f. It follows that the completion of \({\mathcal {E}}_s\) with respect to the norm in \(L^2(\mu )\) forms a Hilbert space \({\mathcal {B}}\) of entire functions of exponential type at most s (the inner product is inherited from \(L^2(\mu )\)). The same estimate (65) yields the property \((A_2)\) from Theorem 7.2 for the space \({\mathcal {B}}\). It is also easy to verify that \({\mathcal {B}}\) satisfies properties \((A_1)\), \((A_3)\) from Theorem 7.2. Hence, the space \({\mathcal {B}}\) coincides with a de Branges space of entire functions. Since for every \(f \in {\mathcal {E}}_s\), the fraction \(\frac{f - f(i)}{z -i}\) belongs to \({\mathcal {E}}_s\), and \({\mathcal {E}}_s\) is dense in \({\mathcal {B}}\), the space \({\mathcal {B}}\) is regular.

Let \({\mathcal {H}}\) be a Hamiltonian on \({\mathbb {R}}_+\) generated by the measure \(\mu \), and let \(\{{\mathcal {B}}_r\}_{r \in {\mathcal {M}}}\) be the corresponding chain of de Branges spaces constructed in Sect. 2. Put \(r = \inf \{t: s = \int _{0}^{t}\sqrt{\det {{\mathcal {H}}(\tau )}}\,\mathrm{d}\tau \}\). Note that for every \(s' \in (0, s)\), the first part of the proof applies to \({\mathcal {E}}_{s'}\) and yields the fact that \((\mathrm{PW}_{s'}, \mu )\) is a de Branges space of entire functions of exponential type at most \(s'\). Theorem 7.3 and Theorem 7.4 then imply that \((\mathrm{PW}_{s'}, \mu ) \subset {\mathcal {B}}_r\). Since \(\cup _{s'<s}{\mathcal {B}}_{r(s')}\) is a dense subset in \({\mathcal {B}}\), we see that the isometric embedding \({\mathcal {B}}\subset {\mathcal {B}}_r\) holds.

To prove that \({\mathcal {B}}_r \subset {\mathcal {B}}\), note that r is a density point of the set \({\mathcal {M}}\cap [0,r]\). Therefore, the set \(\cup _{r'<r}{\mathcal {B}}_{r'}\) is dense in \({\mathcal {B}}_r\). Now take any point \(r' \in {\mathcal {M}}\cap [0,r)\) and find \(s'\) such that \(r> s' > \int _{0}^{r'}\sqrt{\det {{\mathcal {H}}(\tau )}}\,\mathrm{d}\tau \). Using again the first part of the proof and Theorem 7.4, we see that \({\mathcal {B}}_{r'} \subset (\mathrm{PW}_{s'}, \mu ) \subset {\mathcal {B}}\). It follows that \({\mathcal {B}}_r \subset {\mathcal {B}}\), as required. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonov, R.V. Szegő Condition and Scattering for One-Dimensional Dirac Operators. Constr Approx 51, 273–302 (2020). https://doi.org/10.1007/s00365-018-9453-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9453-3

Keywords

Mathematics Subject Classification

Navigation