Skip to main content
Log in

Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Exact solutions for shear stress in a polymeric liquid subjected to large-amplitude oscillatory shear flow (LAOS) contain many Bessel functions. For the simplest of these, for instance, the corotational Maxwell fluid, in the closed form for its exact solution, Bessel functions appear 42 times, each of which is inside a summation. Approximate analytical solutions for shear stress in LAOS often take the form of the first few terms of a power series in the shear rate amplitude, and without any Bessel functions at all. There is thus practical interest in extending the Goddard integral expansion (GIE), to an arbitrary number of terms. In continuum theory, these truncated series are arrived at laboriously using the GIE. However, each term in the GIE requires much more work than its predecessor. For the corotational Maxwell fluid, for instance, the GIE for the shear stress has yet to be taken beyond the sixth power of the shear rate amplitude. In this paper, we begin with the exact solution for shear stress responses in corotational Maxwell fluids, and then perform an expansion by symbolic computation to confirm up to the sixth power, and to then continue the GIE. In this paper for example, we continue the GIE to the 40th power of the shear rate amplitude. We use Ewoldt grids to show our main result to be highly accurate. We also show the radius of convergence of the GIE to be infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and I.A. Stegun, 1972, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical tables, 10th printing, National Bureau of Standards, Washington DC.

    Google Scholar 

  • Ad Hoc Committee on Official Nomenclature and Symbols, 2013, Official symbols and nomenclature of the Society of Rheology, J. Rheol. 57, 1047–1055.

  • Bird, R.B. and A.J. Giacomin, 2012, Who conceived the “complex viscosity”?, Rheol. Acta 51, 481–486.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1977, Dynamics of Polymeric Liquids, Vol. 1, 1st ed., Wiley, New York.

    Google Scholar 

  • Bird, R.B., W.E. Stewart, and E.N. Lightfoot, 2007, Transport Phenomena, Revised 2nd ed., Wiley & Sons, New York.

    Google Scholar 

  • Bird, R.B., W.E. Stewart, E.N. Lightfoot, and D.J. Klingenberg, 2015, Introductory Transport Phenomena, Wiley & Sons, New York.

    Google Scholar 

  • Böhme, G., 1981, Strömungsmechanik nicht-Newtonscher Fluide, BG Teubner, Stuttgart.

    Book  Google Scholar 

  • Cho, K.S., 2016, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer, Dordrecht.

    Book  Google Scholar 

  • Dealy, J.M., J.F. Petersen, and T.T. Tee, 1973, A concentric-cylinder rheometer for polymer melts, Rheol. Acta 12, 550–558.

    Article  Google Scholar 

  • Ewoldt, R.H., 2009, Nonlinear Viscoelastic Materials: Bioinspired Applications and New Characterization Measures, Ph.D Thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Ewoldt, R.H., P. Winter, J. Maxey, and G.H. McKinley, 2010, Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials, Rheol. Acta 49, 191–212.

    Article  Google Scholar 

  • Gemant, A., 1935a, Komplexe viskosität, Naturwissenschaften 23, 406–407.

    Article  Google Scholar 

  • Gemant, A., 1935b, The conception of a complex viscosity and its application to dielectrics, J. Chem. Soc. Faraday Trans. 31, 1582–1590.

    Article  Google Scholar 

  • Giacomin, A.J. and C. Saengow, 2018, Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow, Mod. Phys. Lett. B 32, 1840036.

    Article  Google Scholar 

  • Giacomin, A.J., C. Saengow, M. Guay, and C. Kolitawong, 2015, Padé approximants for large-amplitude oscillatory shear flow, Rheol. Acta 54, 679–693.

    Article  Google Scholar 

  • Giacomin, A.J. and J.M. Dealy, 1993, Large-amplitude oscillatory shear, In: Collyer, A.A., eds., Techniques in Rheological Measurement, Springer, Dordrecht, 99–121.

    Chapter  Google Scholar 

  • Giacomin, A.J. and J.M. Dealy, 1998, Using large-amplitude oscillatory shear, In: Collyer, A.A. and D.W. Clegg, eds., Rheological Measurement, 2nd ed., Springer, Dordrecht, 327–356.

    Chapter  Google Scholar 

  • Giacomin, A.J., R.B. Bird, C. Aumnate, A.M. Mertz, A.M. Schmalzer, and A.W. Mix, 2012a, Viscous heating in largeamplitude oscillatory shear flow, Phys. Fluids 24, 103101.

    Article  Google Scholar 

  • Giacomin, A.J., R.B. Bird, and H.M. Baek, 2013, Temperature rise in large-amplitude oscillatory shear flow from shear stress measurements, Ind. Eng. Chem. Res. 52, 2008–2017.

    Article  Google Scholar 

  • Giacomin, A.J., R.B. Bird, L.M. Johnson, and A.W. Mix, 2012b, Corrigenda: “Large-amplitude oscillatory shear flow from the corotational Maxwell model” [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 1081-1099], J. Non-Newton. Fluid Mech. 187-188, 48.

    Article  Google Scholar 

  • Giacomin, A.J., R.B. Bird, L.M. Johnson, and A.W. Mix, 2011, Large-amplitude oscillatory shear flow from the corotational Maxwell model, J. Non-Newton. Fluid Mech. 166, 1081–1099.

    Article  Google Scholar 

  • Han, C.D., 2007, Rheology and Processing of Polymeric Materials: Volume I: Polymer Rheology, Oxford University Press, New York.

    Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Jbara, L.M., A.J. Giacomin, and P.H. Gilbert, 2016, Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow, J. Soc. Rheol. Jpn. 44, 289–302.

    Article  Google Scholar 

  • Kovacic, J.J., 1986, An algorithm for solving second order linear homogeneous differential equations, J. Symb. Comput. 2, 3–43.

    Article  Google Scholar 

  • Larson, R.G., 1988, Constitutive Equations for Polymer Melts and Solutions, Buttersworths, Boston.

    Google Scholar 

  • Oldroyd, J.G., 1958, Non-newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. A-Math. Phys. Eng. Sci. 245, 278–297.

    Article  Google Scholar 

  • Poungthong, P., C. Saengow, A.J. Giacomin, C. Kolitawong, D. Merger, and M. Wilhelm, 2018, Padé approximant for normal stress differences in large-amplitude oscillatory shear flow, Phys. Fluids 30, 040910.

    Article  Google Scholar 

  • Rogers, S.A., 2017, In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity, Rheol. Acta, 56, 501–525.

    Article  Google Scholar 

  • Rudin, W., 1964, Principles of Mathematical Analysis, Vol. 3, McGraw-hill, New York.

    Google Scholar 

  • Saengow, C., 2016a, Polymer Process Partitioning: Extruding Plastic Pipe, Ph.D Thesis, Queen’s University.

    Google Scholar 

  • Saengow, C., 2016b, Polymer Process Partitioning Approach: Plastic Pipe Extrusion, Ph.D Thesis, King Mongkut’s University of Technology North Bangkok.

    Google Scholar 

  • Saengow, C. and A.J. Giacomin, 2017a, Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow, Phys. Fluids 29, 121601.

    Article  Google Scholar 

  • Saengow, C. and A.J. Giacomin, 2017b, Fluid elasticity in plastic pipe extrusion: Loads on die barrel, Int. Polym. Process. 32, 648–658.

    Article  Google Scholar 

  • Saengow, C. and A.J. Giacomin, 2018a, Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework, Phys. Fluids 30, 030703.

    Article  Google Scholar 

  • Saengow, C. and A.J. Giacomin, 2018b, Thermodynamic instability of polymeric liquids in large-amplitude oscillatory shear flow from corotational Maxwell fluid, Polymers Research Group Technical Report 40, Chemical engineering department, Queen's University, Kingston, 1–39.

    Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2015a, Exact analytical solution for large-amplitude oscillatory shear flow, Macromol. Theory Simul. 24, 352–392.

    Article  Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2015b, Extruding plastic pipe from eccentric dies, J. Non-Newton. Fluid Mech. 223, 176–199.

    Article  Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2017a, Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress, Phys. Fluids 29, 043101.

    Article  Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2017b, Knuckle formation from melt elasticity in plastic pipe extrusion, J. Non-Newton. Fluid Mech. 242, 11–22.

    Google Scholar 

  • Saengow, C., A.J. Giacomin, N. Khalaf, and M. Guay, 2017c, Simple accurate expressions for shear stress in large-amplitude oscillatory shear flow, J. Soc. Rheol. Jpn. 45, 251–260.

    Article  Google Scholar 

  • Swokowski, E.W., 1976, Calculus with Analytic Geometry, Prindle, Weber & Schmidt, Massachusetts.

    Google Scholar 

  • Tee, T.T., 1974, Large Amplitude Oscillatory Shearing of Polymer Melts, Ph.D Thesis, McGill University.

    Google Scholar 

  • Tee, T.T. and J.M. Dealy, 1975, Nonlinear viscoelasticity of polymer melts, J. Rheol. 19, 595–615.

    Google Scholar 

  • Torre, O.C.D.L. and R.H. Ewoldt, 2018, First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS), Korea-Aust. Rheol. J. 30, 1–10.

    Article  Google Scholar 

  • Wú, Q. and J. Wu, 2002, Polymer Rheology, Higher Education Press, Beijing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Jeffrey Giacomin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poungthong, P., Saengow, C., Giacomin, A.J. et al. Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow. Korea-Aust. Rheol. J. 30, 169–178 (2018). https://doi.org/10.1007/s13367-018-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-018-0017-7

Keywords

Navigation