Skip to main content
Log in

Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes

Model validity: isotropic versus anisotropic conductivity to capture AM Benchmark Test AMB2018-02

  • Thematic Section: Additive Manufacturing Benchmarks 2018
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

In this contribution, we validate a physical model based on a transient temperature equation (including latent heat), w.r.t. the experimental set AMB2018-02 provided within the additive manufacturing benchmark series, established at the National Institute of Standards and Technology, USA. We aim at predicting the following quantities of interest, width, depth, and length of the melt pool by numerical simulation, and report also on the obtainable numerical results of the cooling rate. We first assume the laser to possess a double-ellipsoidal shape and demonstrate that a well-calibrated, purely thermal model based on isotropic thermal conductivity is able to predict all the quantities of interest, up to a deviation of maximum 7.3% from the experimentally measured values. However, it is interesting to observe that if we directly introduce, whenever available, the measured laser profile in the model (instead of the double-ellipsoidal shape), the investigated model returns a deviation of 19.3% from the experimental values. This motivates a model update by introducing anisotropic conductivity, which is intended to be a simplistic model for heat material convection inside the melt pool. Such an anisotropic model enables the prediction of all quantities of interest mentioned above with a maximum deviation from the experimental values of 6.5%. We note that, although more predictive, the anisotropic model induces only a marginal increase in computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The latter two are not depicted due to limitations of space in this article

References

  1. AM Bench benchmark challenge CHAL-AMB2018-02-MP. https://www.nist.gov/ambench/amb2018-02-description

  2. Special metals corporation. http://www.specialmetals.com

  3. Box G (1976) Science and Statistics. J Am Stat Assoc 71(356):791–799. https://doi.org/10.2307/2286841

    Article  Google Scholar 

  4. Celentano D, Oñate E, Oller S (1994) A temperature-based formulation for finite element analysis of generalized phase-change problems. Int J Numer Methods Eng 37(20):3441–3465

    Article  Google Scholar 

  5. Chiumenti M, Neiva E, Salsi E, Cervera M, Badia S, Moya J, Chen Z, Lee C, Davies C (2017) Numerical modelling and experimental validation in Selective Laser Melting. Addit Manuf 18:171–185. https://doi.org/10.1016/j.addma.2017.09.002

    Article  Google Scholar 

  6. D’Angella D, Kollmannsberger S, Rank E, Reali A (2018) Multi-level bézier extraction for hierarchical local refinement of Isogeometric Analysis. Comput Methods Appl Mech Eng 328:147–174. https://doi.org/10.1016/j.cma.2017.08.017

    Article  Google Scholar 

  7. Denlinger ER, Jagdale V, Srinivasan G, El-Wardany T, Michaleris P (2016) Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements. Addit Manuf 11:7–15. https://doi.org/10.1016/j.addma.2016.03.003.00005

    CAS  Google Scholar 

  8. Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18. https://doi.org/10.1155/2018/4920718

    Article  Google Scholar 

  9. Ghosh S, Ma L, Levine LE, Ricker RE, Stoudt MR, Heigel JC, Guyer JE (2018) Single-track melt-pool measurements and microstructures in inconel 625. JOM 70:1011–1016. https://doi.org/10.1007/s11837-018-2771-x

    Article  CAS  Google Scholar 

  10. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  11. Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer, New York

    Google Scholar 

  12. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  CAS  Google Scholar 

  13. Kollmannsberger S, Özcan A, Carraturo M, Zander N, Rank E (2018) A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting. Comput Math Appl 75(5):1483–1497. https://doi.org/10.1016/j.camwa.2017.11.014

    Article  Google Scholar 

  14. Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987. https://doi.org/10.1016/j.jmatprotec.2010.12.016

    Article  Google Scholar 

  15. Lindgren LE (2007) Computational welding mechanics: Thermomechanical and microstructural simulations. Woodhead Publishing Limited and CRC Press LLC

  16. Lu X, Lin X, Chiumenti M, Cervera M, Li J, Ma L, Wei L, Hu Y, Huang W (2018) Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V. Addit Manuf 21:30–40. https://doi.org/10.1016/j.addma.2018.02.003

    CAS  Google Scholar 

  17. Mahmoudi M, Tapia G, Karayagiz K, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integr Mater Manuf Innov 7(3):116–135. https://doi.org/10.1007/s40192-018-0113-z

    Article  Google Scholar 

  18. Megahed M, Mindt HW, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr Mater Manuf Innov 5(1). https://doi.org/10.1186/s40192-016-0047-2

    Article  Google Scholar 

  19. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead, Cambridge. OCLC: ocm47677674

    Book  Google Scholar 

  20. Riedlbauer D, Scharowsky T, Singer RF, Steinmann P, Körner C, Mergheim J (2017) Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 88(5-8):1309–1317. https://doi.org/10.1007/s00170-016-8819-6

    Article  Google Scholar 

  21. Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proc Inst Mech Eng, Part B: J Eng Manuf 231(1):96–117. https://doi.org/10.1177/0954405414567522

    Article  Google Scholar 

  22. Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu W (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Comput Mech 57(4):583–610. https://doi.org/10.1007/s00466-015-1240-4

    Article  Google Scholar 

  23. Svenungsson J, Choquet I, Kaplan AF (2015) Laser welding process – A review of keyhole welding modelling. Phys Procedia 78:182–191. https://doi.org/10.1016/j.phpro.2015.11.042

    Article  CAS  Google Scholar 

  24. Tanaka M (2004) An introduction to physical phenomena in arc welding processes. Weld Int 18(11):845–851. https://doi.org/10.1533/wint.2004.3342

    Article  Google Scholar 

  25. Yan Z, Liu W, Tang Z, Liu X, Zhang N, Li M, Zhang H (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441. https://doi.org/10.1016/j.optlastec.2018.04.034

    Article  CAS  Google Scholar 

  26. Zhang Z, Huang Y, Rani Kasinathan A, Imani Shahabad S, Ali U, Mahmoodkhani Y, Toyserkani E (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312. https://doi.org/10.1016/j.optlastec.2018.08.012

    Article  CAS  Google Scholar 

Download references

Funding

The first author received financial support from the German Research Foundation (DFG) under grant RA 624/27-2. This work was partially supported by Regione Lombardia through the project ”TPro.SL - Tech Profiles for Smart Living” (No. 379384) within the Smart Living program, and through the project ”MADE4LO - Metal ADditivE for LOmbardy” (No. 240963) within the POR FESR 2014-2020 program. Massimo Carraturo and Alessandro Reali have been partially supported by Fondazione Cariplo - Regione Lombardia through the project “Verso nuovi strumenti di simulazione super veloci ed accurati basati sull’analisi isogeometrica”, within the program RST - rafforzamento.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kollmannsberger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollmannsberger, S., Carraturo, M., Reali, A. et al. Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes. Integr Mater Manuf Innov 8, 167–177 (2019). https://doi.org/10.1007/s40192-019-00132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-019-00132-9

Keywords

Navigation