Skip to main content
Log in

Estimation of abundance from presence–absence maps using cluster models

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

A presence–absence map consists of indicators of the occurrence or nonoccurrence of a given species in each cell over a grid, without counting the number of individuals in a cell once it is known it is occupied. They are commonly used to estimate the distribution of a species, but our interest is in using these data to estimate the abundance of the species. In practice, certain types of species (in particular flora types) may be spatially clustered. For example, some plant communities will naturally group together according to similar environmental characteristics within a given area. To estimate abundance, we develop an approach based on clustered negative binomial models with unknown cluster sizes. Our approach uses working clusters of cells to construct an estimator which we show is consistent. We also introduce a new concept called super-clustering used to estimate components of the standard errors and interval estimators. A simulation study is conducted to examine the performance of the estimators and they are applied to real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arrhenius O (1921) Species and area. J Ecol 9:95–99

    Article  Google Scholar 

  • Beissinger SR, Iknayan KJ, Guillera-Arroita G, Zipkin EF, Dorazio RM, Royle JA, Kéry M (2016) Incorporating imperfect detection into joint models of communities: a response to Warton et al. Trends Ecol Evol 31:736–737

    Article  Google Scholar 

  • Chen G, Kéry M, Plattner M, Ma K, Gardner B (2013) Imperfect detection is the rule rather than the exception in plant distribution studies. J Ecol 101:183–191

    Article  Google Scholar 

  • Condit R (1998) Tropical forest census plots. Springer-Verlag and R. G. Landes Company, Berlin

    Book  Google Scholar 

  • Conlisk E, Conlisk J, Enquist B, Thompson J, Harte J (2009) Improved abundance prediction from presence-absence data. Glob Ecol Biogeogr 18:1–10

    Article  Google Scholar 

  • Dunstan PK, Foster SD, Darnell R (2011) Model based grouping of species across environmental gradients. Ecol Model 222:955–963

    Article  Google Scholar 

  • Guillera-Arroita G (2017) Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities. Ecography 40:281–295

    Article  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, MacKenzie DI, Wintle BA, McCarthy MA (2014) Ignoring imperfect detection in biological surveys is dangerous: a response to “Fitting and interpreting occupancy models”. PLoS ONE 9:e99571

    Article  Google Scholar 

  • He F, Gaston KJ (2000) Estimating species abundance from occurrence. Am Nat 156:553–559

    Article  Google Scholar 

  • He F, Gaston KJ (2007) Estimating abundance from occurrence: an underdetermined problem. Am Nat 170:655–659

    Article  Google Scholar 

  • He F, Reed W (2006) Downscaling abundance from the distribution of species: occupancy theory and applications. In: Wu J, Jones KB, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrecht, pp 89–108

    Chapter  Google Scholar 

  • Hubbell SP, Condit R, Foster RB (2005) Barro Colorado Forest Census Plot Data. http://ctfs.si.edu/webatlas/datasets/bci

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Loo de Lao S (1999) Light gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  CAS  Google Scholar 

  • Hwang WH, He F (2011) Estimating abundance from presence/absence maps. Methods Ecol Evol 2:550–559

    Article  Google Scholar 

  • Hwang WH, Huggins RM (2016) Estimating abundance from presence-absence maps via a paired negative binomial model. Scand J Stat 43:573–586

    Article  Google Scholar 

  • Hwang WH, Huggins RM, Chen LF (2017) A note on the inverse birthday problem with applications. Am Stat 71:191–201

    Article  Google Scholar 

  • Kunin WE (1998) Extrapolating species abundance across spatial scales. Science 281:1513–1515

    Article  CAS  Google Scholar 

  • Kunin WE, Hartley S, Lennon JJ (2000) Scaling down: on the challenge of estimating abundance from occurrence patterns. Am Nat 156:560–566

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier/Academic Press, Burlington

    Google Scholar 

  • Manly BFJ, Navarro Alberto JA (2015) Introduction to ecological sampling. Chapman & Hall/CRC, London

    Google Scholar 

  • Muller CH, Huggins RM, Hwang WH (2011) Consistent estimation of species abundance from a presence-absence map. Stat Probab Lett 81:1449–1457

    Article  Google Scholar 

  • Nadarajah S, Kotz S (2008) Exact distribution of the max/min of two Gaussian random variables. IEEE Trans Very Large Scale Integr (VLSI) Syst 16:210–212

    Article  Google Scholar 

  • Novotny V, Miller S, Hulcr J, Drew R, Basset Y, Janda M, Setliff G, Darrow K, Stewart A, Auga J, Isua B, Molem K, Manumbor M, Tamtiai E, Mogia M, Weiblen G (2007) Low beta diversity of herbivorous insects in tropical forests. Nature 448:692–695

    Article  CAS  Google Scholar 

  • Ross L, Woodin S, Hester A, Thompson D, Birks H (2012) Biotic homogenization of upland vegetation: Patterns and drivers at multiple spatial scales over five decades. J Veg Sci 23:755–770

    Article  Google Scholar 

  • Royle AR, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press, San Diego

    Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Shen G, He F, Waagepetersen R, Sun IF, Hao Z, Chen ZS, Yu M (2013) Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology 94:2436–2443

    Article  Google Scholar 

  • Sherman M (2011) Spatial statistics and spatio-temporal data: covariance functions and directional properties. Wiley, New York

    Google Scholar 

  • Solow AR, Smith WK (2010) On predicting abundance from occupancy. Am Nat 176:96–98

    Article  Google Scholar 

  • Welsh AH, Lindenmayer DB, Donnelly CF (2013) Fitting and interpreting occupancy models. PLoS ONE 8:e52015

    Article  CAS  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

  • Yin D, He F (2014) A simple method for estimating species abundance from occurrence maps. Methods Ecol Evol 5:336–343

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Associate Editor and a referee for providing helpful comments and constructive suggestions, especially for indicating the use of jackknife standard error. The BCI forest dynamics research project was founded by S.P. Hubbell and R.B. Foster and is now managed by R. Condit, S. Lao, and R. Perez under the Center for Tropical Forest Science and the Smithsonian Tropical Research in Panama. Numerous organizations have provided funding, principally the U.S. National Science Foundation, and hundreds of field workers have contributed to this project. This work was supported by the Ministry of Science & Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Han Hwang.

Additional information

Handling Editor Pierre Dutilleul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 160 KB)

Appendices

Appendix A: Elementary calculations

1.1 A.1 One Cluster

We establish some probabilities associated with a single cluster. Consider a single cell. Let \(\lambda \sim \mathrm{Gamma}(\kappa ,\beta )\), which has density

$$\begin{aligned} g(\lambda ;\kappa ,\beta )=\frac{\lambda ^{\kappa -1}}{\Gamma (\kappa )\beta ^\kappa } \exp (-\lambda /\beta ), \end{aligned}$$

where \(\lambda >0\) and \(\Gamma (\cdot )\) is the usual gamma function. We suppose that given \(\lambda \), the number of a species in a grid cell X satisfies \(X \sim \mathrm{Poisson}(\lambda )\) so that if \(Z=I(X=0)\) we have \(p(\lambda )=P(Z=1\mid \lambda )=P(X=0 \mid \lambda )=\exp (-\lambda )\).

Consider a cluster of c random variables \(X_1,\ldots ,X_{c}\) that have the same value of \(\lambda \), and given \(\lambda \)\(X_1,\ldots ,X_c\) are independent \(\mathrm{Poisson}(\lambda )\) distributed. Hence, \(X_1,\ldots , X_{c}\) are exchangeable. Then, with \(s=x_1+\cdots +x_{c}\), it yields the following joint distribution

$$\begin{aligned} P(X_1=x_1,\ldots ,X_{c}=x_{c})=\frac{\Gamma (\kappa +s)}{\Gamma (\kappa )x_1! \cdots x_{c}!}\frac{\beta ^s}{(1+c \beta )^{\kappa +s}}. \end{aligned}$$

Clearly the marginal distributions of the \(X_\ell \) are negative binomial:

$$\begin{aligned} P(X_\ell =m)=\frac{\Gamma (\kappa +m)}{\Gamma (\kappa )m!}\left( \frac{1}{1+\beta }\right) ^\kappa \left( \frac{\beta }{1+\beta }\right) ^m, m=0,1,\ldots , \end{aligned}$$

so that \(E(X_\ell )=\beta \kappa \)\(\mathrm{Var}(X_\ell )=\kappa \beta (1+\beta )\) and \(\mathrm{Cov}(X_1,X_2)=\kappa \beta ^2\). A direct calculation leads to \(\mathrm{Var}\left( \sum _{\ell =1}^{c} X_\ell \right) =\kappa (\beta ^2c^2+\beta c)\).

Now, let \(F_k\) be the number of nonempty cells in the kth working cluster, \(k=1,\ldots ,M/c'\), let \(\theta =(\beta ,\kappa )\), and let \(p_{c'}(\ell ;\theta )= P(Z_{k}=\ell )\)\(\ell =0,1,\ldots ,c'\). Then, with \(\theta =(\beta ,\kappa )^\intercal \),

$$\begin{aligned} p_{c'}(j;\theta )=P(F_k=j)&={c' \atopwithdelims ()j} \int _0^\infty (1-e^{-\lambda })^je^{-(c'-j)\lambda }g(\lambda ;\beta ,\kappa ) \mathrm{d}\lambda \nonumber \\&={c' \atopwithdelims ()j} \sum _{\ell =0}^j (-1)^\ell {j \atopwithdelims ()\ell } \int _0^\infty e^{-(c'-j+\ell )\lambda }g(\lambda ;\beta ,\kappa )\mathrm{d} \lambda \nonumber \\&= {c'\atopwithdelims ()j} \sum _{\ell =0}^j{j \atopwithdelims ()\ell } \frac{(-1)^\ell }{\{1+(c'-j+\ell )\beta \}^\kappa }. \end{aligned}$$
(11)

1.2 A.2 Multiple Clusters

Lemma 1

Under the c-cluster model,

$$\begin{aligned}&E(f_0)=\frac{M}{(1+\beta )^\kappa },\quad E(f_0^{c'})=\frac{M}{c'(1+c'\beta )^\kappa }, \end{aligned}$$
(12)
$$\begin{aligned}&\frac{c'}{M} f_0^{c'} \buildrel {a.s.} \over \longrightarrow \frac{1}{(1+c'\beta )^\kappa }, ~ \text{ and } ~\frac{1}{M} f_0 \buildrel {a.s.} \over \longrightarrow \frac{1}{(1+\beta )^\kappa }. \end{aligned}$$
(13)

Proof

First, from (11) we have

$$\begin{aligned} p(0)=p_1(0;\theta )=\frac{1}{(1+\beta )^\kappa }, \text{ and } p_{c'}(0;\theta )=\frac{1}{(1+c'\beta )^\kappa }, \end{aligned}$$

which yields (12). The law of large numbers yields

$$\begin{aligned} T^{-1} \sum _{t=1}^T \sum _{j=1}^K Z_{tj}\buildrel {a.s.} \over \longrightarrow \frac{K}{(1+c'\beta )^\kappa }, \text{ and } T^{-1} \sum _{t=1}^T \sum _{j=1}^K \sum _{k=1}^{c'} Z_{tjk} \buildrel {a.s.} \over \longrightarrow \frac{Kc'}{(1+\beta )^\kappa }, \end{aligned}$$

and (13) follows. \(\square \)

Lemma 2

$$\begin{aligned} \frac{\partial g(\theta )}{\partial \theta ^\intercal }= M D(\theta ). \end{aligned}$$

Proof

First, \(T=M/c\)\(K=c/c'\) and

$$\begin{aligned} \frac{\partial g_t(\theta )}{\partial \theta ^\intercal }= \left[ \begin{array}{cc} \frac{\kappa c' K}{(1+c'\beta )^{\kappa +1}}&{}\frac{K \log (1+c'\beta )}{(1+c'\beta )^{\kappa }}\\ \frac{\kappa K c'}{(1+\beta )^{\kappa +1}}&{}\frac{K c'\log (1+\beta )}{(1+\beta )^\kappa } \end{array} \right] . \end{aligned}$$

so that \(T{\partial g_t(\theta )}/{\partial \theta ^\intercal }=M D(\theta )\). \(\square \)

Lemma 3

\(\mathrm{Cov}(g_t(\theta ))=K \Sigma (\theta ,K)\).

Proof

Elementary calculations show that for \(j \ne \ell \), we have

$$\begin{aligned} E(Z_{tj})&= \mu =\frac{1}{(1+c'\beta )^\kappa },\quad \mathrm{Var}(Z_{tj})=\sigma ^2=\frac{1}{(1+c'\beta )^\kappa }-\frac{1}{(1+c'\beta )^{2\kappa }},\\ \mathrm{Cov}(Z_{tj},Z_{t\ell })&=\sigma _{12}=\frac{1}{(1+2c'\beta )^\kappa }-\frac{1}{(1+c'\beta )^{2\kappa }}, \end{aligned}$$

and

$$\begin{aligned} E(Z_{tjk})&= \mu ^0=\frac{1}{(1+\beta )^\kappa },\quad \mathrm{Var}(Z_{tjk})=\sigma ^{02}=\frac{1}{(1+\beta )^\kappa }-\frac{1}{(1+\beta )^{2\kappa }},\\ \mathrm{Cov}(Z_{tjk},Z_{t \ell m})&=\sigma ^0_{12}=\frac{1}{(1+2\beta )^\kappa }-\frac{1}{(1+\beta )^{2\kappa }}. \end{aligned}$$

Also, note that

$$\begin{aligned} \mathrm{Cov}(Z_{tjk},Z_{tj})&=P(Z_{tj}=1)-P(Z_{tj}=1)P(Z_{tjk}=1)\\&=\frac{1}{(1+c'\beta )^\kappa }\left\{ 1-\frac{1}{(1+\beta )^\kappa }\right\} = s_1 \end{aligned}$$

and

$$\begin{aligned} \mathrm{Cov}(Z_{tj},Z_{t\ell k})&=P(Z_{tj}=1,Z_{t\ell k}=1)-P(Z_{tj}=1)P(Z_{t\ell k}=1)\\&= \frac{1}{\left\{ 1+(c'+1)\beta \right\} ^\kappa }-\frac{1}{(1+c'\beta )^\kappa }\frac{1}{(1+\beta )^\kappa }=s_2. \end{aligned}$$

\(\square \)

Note that \(\Sigma (\theta ,K)\) depends on the true cluster size c through K.

Lemma 4

Let \(\theta ^0\) denote the true value of \(\theta \). Then

$$\begin{aligned} \widetilde{\Sigma }(\theta ^0) \buildrel {a.s.} \over \longrightarrow \Sigma (\theta ^0,K) \end{aligned}$$
(14)

and hence,

$$\begin{aligned} \widetilde{\Sigma }(\tilde{\theta }_{c'}) \buildrel {a.s.} \over \longrightarrow \Sigma (\theta ^0,K) \end{aligned}$$
(15)

Proof

First, note that if the pair of random variables (WX) are independent of the pair (YZ) and w.l.o.g. all have zero means then

$$\begin{aligned} E\left\{ (W+X+Y+Z)^2\right\}&= E\left\{ (W+X)^2\right\} +E\left\{ (Y+Z)^2\right\} \\&\quad +2E\left\{ (W+X) (Y+Z)\right\} \\&= E\left\{ (W+X)^2\right\} +E\left\{ (Y+Z)^2\right\} . \end{aligned}$$

so that \((W+X)^2+(Y+Z)^2\) and \((W+X+Y+Z)^2\) have the same mean. Now, using (6), \(g_t^*(\theta )\)\(t=1,\ldots ,T^*\) are independently and identically distributed with zero means and arguing as in Lemma 3, have the common covariance matrix \(s^*K\Sigma (\theta ^0,K)=K^*\Sigma (\theta ^0,K)\). Hence

$$\begin{aligned} \left( T^*\right) ^{-1}\sum _{t=1}^{T^*} g^*_t(\theta ) g^*_t(\theta )^\intercal \buildrel {a.s.} \over \longrightarrow K^*\Sigma (\theta ^0,K^0) \end{aligned}$$

and noting that \(T^*K^*=M/c'\) yields (14). Next,

$$\begin{aligned} \frac{1}{T^*} \sum _{t=1}^{T^*} g^*_t(\tilde{\theta }_{c'}) g^*_t(\tilde{\theta }_{c'})^\intercal= & {} \frac{1}{T^*} \sum _{t=1}^{T^*} \left[ g^*_t(\tilde{\theta }_{c'})\{ g^*_t(\tilde{\theta }_{c'})^\intercal -g^*_t(\theta ^0)^\intercal \}\right. \\&\left. +\{g^*_t(\tilde{\theta }_{c'})-g^*_t(\theta ^0)\} g^*_t(\theta ^0)^\intercal \right] \end{aligned}$$

and (15) follows from the Toeplitz lemma. \(\square \)

Lemma 5

Recall \(X_t=\sum _{j=1}^K\sum _{k=1}^{c'} X_{tjk}\). Then \(\mathrm{Cov}\{g_t(\theta ), X_t\}=K C(\theta ,K)\) where \(C(\theta ,K)\) is given by (9), i.e.,

$$\begin{aligned} C(\theta ,K)=\left[ \begin{array}{c}\frac{- c'\kappa \beta }{(1+c'\beta )^\kappa }+(K-1)\left\{ \frac{c'\kappa \beta }{(1+c'\beta )^{\kappa +1}} -\frac{c'\kappa \beta }{(1+c'\beta )^\kappa }\right\} \\ \frac{-c'\kappa \beta }{(1+\beta )^\kappa } - c'(Kc'-1)\frac{\kappa \beta ^2}{(1+\beta )^{\kappa +1}}\end{array}\right] . \end{aligned}$$

Proof

First, \(Z_{tj} X_{tj}=0\) and as \(E(X_{tj})=c'\kappa \beta \), it is easily seen that

$$\begin{aligned} E\left\{ \left( Z_{tj}-\frac{1}{(1+c'\beta )^\kappa }\right) (X_{tj}-c'\kappa \beta )\right\} =\frac{-c'\kappa \beta }{(1+c'\beta )^\kappa }. \end{aligned}$$

Next,

$$\begin{aligned}&E\left\{ \left( Z_{tj}-\frac{1}{(1+c'\beta )^\kappa }\right) (X_{t\ell }-c' \kappa \beta ) \right\} \\&\quad = E\left\{ Z_{tj}(X_{t\ell }-c'\kappa \beta ) \right\} \\&\quad = E(Z_{tj} X_{t\ell }) -\frac{c'\kappa \beta }{(1+c'\beta )^\kappa } \end{aligned}$$

Now, as \(X_{t\ell } \mid \lambda _t \sim \mathrm{Poisson}(c' \lambda _t)\) and for \(\ell \ne j\) given \(\lambda _t\)\(X_{t\ell }\) and \(Z_{tj}\) are independent, then for \(\ell \ne j\) and \(s>0\),

$$\begin{aligned} P(X_{t\ell }Z_{tj}=s)&= P(X_{t\ell }=s,Z_{tj}=1)\\&= \int _0^\infty \frac{\exp (-\lambda c') (\lambda c')^s}{s!} \exp (-\lambda c') \frac{\lambda ^{\kappa -1}}{\Gamma (\kappa )\beta ^\kappa } \exp (-\lambda /\beta ) \mathrm{d} \lambda \\&=\frac{\Gamma (\kappa +s)}{\Gamma (\kappa )s!} \left( \frac{1}{1+2c'\beta }\right) ^\kappa \frac{(c'\beta )^s}{(1+2c'\beta )^{s}}, \end{aligned}$$

so that

$$\begin{aligned} E\left( Z_{tj} X_{t\ell }\right) =\sum _{s=1}^\infty s \frac{\Gamma (\kappa +s)}{\Gamma (\kappa )s!}\left( \frac{1}{1+2c'\beta }\right) ^\kappa \frac{(c'\beta )^s}{(1+2c' \beta )^{s}}= \frac{c'\kappa \beta }{(1+c'\beta )^{\kappa +1}}, \end{aligned}$$

and hence

$$\begin{aligned} E\left\{ \left( Z_{tj}-\frac{1}{(1+c'\beta )^\kappa }\right) (X_{t\ell }-c'\kappa \beta )\right\} =\frac{c'\kappa \beta }{(1+c'\beta )^{\kappa +1}} -\frac{c'\kappa \beta }{(1+c'\beta )^\kappa }. \end{aligned}$$

Thus, the first term in \(C(\theta ,K)\) is

$$\begin{aligned} \frac{- c'\kappa \beta }{(1+c'\beta )^\kappa }+(K-1) \left\{ c'\kappa \beta -\frac{c'\kappa \beta }{(1+c'\beta )^\kappa }\right\} . \end{aligned}$$

Similarly,

$$\begin{aligned}&E\left\{ \sum _{j=1}^K \sum _{k=1}^{c'}\left( Z_{tjk}-\frac{1}{(1+\beta )^\kappa }\right) \sum _{j=1}^K\sum _{k=1}^{c'}\left( X_{tjk}- \kappa \beta \right) \right\} \\&\quad = Kc' E\left\{ \left( Z_{tjk}-\frac{1}{(1+\beta )^\kappa }\right) \left( X_{tjk}-\kappa \beta \right) \right\} \\&\qquad + Kc'(Kc'-1) E\left\{ \left( Z_{tjk}-\frac{1}{(1+\beta )^\kappa }\right) \left( X_{tj\ell }-\kappa \beta \right) \right\} \\&\quad = \frac{-Kc'\kappa \beta }{(1+\beta )^\kappa } - Kc'(Kc'-1)\frac{\kappa \beta ^2}{(1+\beta )^{\kappa +1}}. \end{aligned}$$

\(\square \)

Appendix B: Proofs of Theorems 2, 3, and 5

1.1 B.1 Proof of Theorem 2

Now \(g(\theta )\) is the sum of the i.i.d. vectors \(g_t(\theta )\)\(t=1,\ldots ,T\). These have zero means and, from Lemma 3, the covariance matrix \(K\Sigma (\theta ^0)\). The central limit theorem for independent random vectors yields \(T^{-1/2}g(\theta ^0) \buildrel D \over \longrightarrow N(0,K\Sigma (\theta ,K))\). Also, \({\partial g(\theta )}/{\partial \theta ^\intercal }=MD(\theta )\) and \(\tilde{\theta }_{c'} -\theta \approx -M^{-1} D(\theta ^0) ^{-1}g(\theta ^0)\) so that

$$\begin{aligned} \left( \frac{M}{c}\right) ^{1/2}\left( \tilde{\theta }_{c'}-\theta \right)&\approx -\left( \frac{M}{c}\right) ^{1/2} D(\theta ^0) ^{-1} \frac{1}{M} g(\theta ^0)\\&= -\frac{1}{c} D(\theta ^0) ^{-1} T^{-1/2} g(\theta ^0). \end{aligned}$$

As a consequence, this implies that

$$\begin{aligned} \left( \frac{M}{c}\right) ^{1/2}\left( \tilde{\theta }_{c'} -\theta ^0\right) \buildrel D \over \longrightarrow N\left( 0,\frac{K}{c^2}D(\theta ^0) ^{-1}\Sigma (\theta ^0,K)D(\theta ^0) ^{-\intercal } \right) , \end{aligned}$$

where \(D(\theta ^0)^{-\intercal }=\{D(\theta ^0) ^{-1}\}^\intercal \).

1.2 B.2 Proof of Theorem 3

Note that under the c-cluster model, the \(X_t(\theta )\) are independent. Then,

$$\begin{aligned} \tilde{N}_{c'} - N&=\tilde{N}_{c'}-M\kappa \beta -\sum _{t=1}^T (X_{t}-Kc'\kappa \beta )\\&\approx M \eta ^\intercal (\tilde{\theta }_{c'}-\theta )-\sum _{t=1}^T (X_{t}-Kc'\kappa \beta )\\&\approx -\eta ^\intercal D(\theta )^{-1}\sum _{t=1}^Tg_t(\theta )-\sum _{t=1}^T (X_t-Kc'\kappa \beta )\\&= -\sum _{t=1}^T \left\{ \eta ^\intercal D(\theta )^{-1} g_t(\theta )+(X_t-c\kappa \beta )\right\} . \end{aligned}$$

As a consequence, we have

$$\begin{aligned} T^{-1/2} \left( \tilde{N}_{c'}-N\right) \buildrel D \over \longrightarrow N(0,w^2(\theta ^0)). \end{aligned}$$

1.3 B.3 Proof of Theorem 5

Without loss of generality, suppose that \(c=n_1\times 1\) and \(c'=n_2 \times 1\). The proof is complete by considering four cases as follows:

  1. 1.

     \(n_1=\phi n_2\), where \(\phi \in Z^+\).

    This is the so-called proper case and the estimator is asymptotically unbiased.

  2. 2.

     \(n_1=\phi n_2+j\), where \(\phi , j\in Z^+\).

    Let \(\ell \) be the least common multiple of \(n_1\) and \(n_2\) and let \(\ell /n_1=m_1\) and \(\ell /n_2=m_2\). Consider the case where each of the \(\ell \times 1\) cells consists of \(m_1\) independent \(n_1\)-clusters. In contrast, the \(\ell \times 1\) cells are also divided into \(m_2's\) \(n_2\)-clusters, however, some of these are dependent.

    In regards to the \(m_2\) clusters, we find some of them are included in a single \(n_1\)-cluster but some are from two \(n_1\)-cluster. Specifically, there may be \([m_2/2]+1\) types of the working clusters, denoted by Type\(_s\), where \(s=0,1,\ldots ,S\) and \(S=[m_2/2]\). A working cluster belongs to the Type\(_s\) if it has s cells from another \(n_1\)-cluster. (Type\(_0\) represents that all \(n_2\) cells are from a single \(n_1\)-cluster).

    It is then easy to see that the empty (absence) probability of the Type\(_s\) cluster is \(\{(1+s\beta )^\kappa (1+(n_2- s)\beta )^\kappa \}^{-1}\). Let \(t_s\) be the frequency of Type\(_s\), so that \(\sum _{s=0}^S t_s= m_2\). Consequently,

    $$\begin{aligned} E\left( \frac{n_2f_0^{n_2}}{M}\right) = \sum _{s=0}^S \frac{t_s}{m_2}\frac{1}{(1+s\beta )^\kappa \left\{ 1+(n_2- s)\beta \right\} ^\kappa } <\frac{1}{(1+n_2\beta )^{\kappa }} \end{aligned}$$

    as \(t_0< m_2\).

  3. 3.

     \(n_2=\phi n_1\), where \(\phi \in Z^+\).

    \(E(n_2f_0^{n_2}/M )=\frac{1}{(1+n_1\beta )^{\kappa \phi }}< \frac{1}{(1+n_2\beta )^{\kappa }}\) as \((1+n_1 \beta )^\phi > 1+\phi n_1 \beta = 1+n_2 \beta \).

  4. 4.

     \(n_2=\phi n_1+j\), where \(\phi , j \in Z^+\).

    Similar to the case 2 and 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huggins, R., Hwang, WH. & Stoklosa, J. Estimation of abundance from presence–absence maps using cluster models. Environ Ecol Stat 25, 495–522 (2018). https://doi.org/10.1007/s10651-018-0415-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-018-0415-5

Keywords

Navigation