Skip to main content
Log in

Comparative study of polystyrene/chemically modified wheat straw composite for green packaging application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The recalcitrant nature of native wheat straw (WS) biomass results from cellulose, lignin, hemicellulose and some amount of protein embedded together in a composite structure causing poor adhesion to a polymer matrix composite. Adequate pre-treatment can curtail the recalcitrance structure of WS and enhance the susceptible cellulose area to synthesize a green composite. This paper examined the effect of various chemical pre-treatment procedures in improving surface morphology of wheat straw. Moreover, polystyrene (PS), PS (60 wt%)/native WS (40 wt%), PS (60 wt%)/NaOH-treated WS (40 wt%), PS (60 wt%)/HCl-treated WS (40 wt%), and PS (60 wt%)/H2SO4-treated WS (40 wt%) composite films were prepared using solution casting method. The changes in crystalline structure, hydrophobicity, water vapor migration rate, and thermal and mechanical stabilities of synthesized bio-composites were examined. From the results it can be concluded that the alkali-treated WS is highly compatible with the PS and can be used to synthesize a biodegradable composite film for various industrial green packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Díaz S, Ortega Z, McCourt M, Kearns MP, Benítez AN (2018) Recycling of polymeric fraction of cable waste by rotational moulding. Waste Manag 76:199–206

    PubMed  Google Scholar 

  2. Bajracharya RM, Manalo AC, Karunasena W, Lau K (2016) Characterisation of recycled mixed plastic solid wastes: coupon and full-scale investigation. Waste Manag 48:72–80

    CAS  PubMed  Google Scholar 

  3. Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116:272–280

    CAS  PubMed  Google Scholar 

  4. Gaurh P, Pramanik H (2018) A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene. Waste Manag 71:86–96

    CAS  PubMed  Google Scholar 

  5. Imam S, Cinelli P, Gordon S, Chiellini E (2005) Characterization of biodegradable composite films prepared from blends of poly (vinyl alcohol), cornstarch, and lignocellulosic fiber. J Polym Environ 13:47–55

    CAS  Google Scholar 

  6. Kyrikou I, Briassoulis D (2007) Biodegradation of agricultural plastic films: a critical review. J Polym Environ 15:125–150

    CAS  Google Scholar 

  7. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics part Ι. Biodegradation in soil. J Polym Environ 18:384–400

    CAS  Google Scholar 

  8. Bourmaud A, Baley C (2007) Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym Degrad Stab 92:1034–1045

    CAS  Google Scholar 

  9. Bourmaud A, Baley C (2009) Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym Degrad Stab 94:297–305

    CAS  Google Scholar 

  10. Abral H, Anugrah AS, Hafizulhaq F, Handayani D, Sugiarti E, Muslimin AN (2018) Effect of nanofibers fraction on properties of the starch based biocomposite prepared in various ultrasonic powers. Int J Biol Macromol 116:1214–1221

    CAS  PubMed  Google Scholar 

  11. Jia N, Li S-M, Ma M-G, Sun R-C, Zhu J-F (2012) Hydrothermal fabrication, characterization, and biological activity of cellulose/CaCO3 bionanocomposites. Carbohydr Polym 88:179–184

    CAS  Google Scholar 

  12. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84

    CAS  Google Scholar 

  13. Mohanty AK, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    CAS  Google Scholar 

  14. Luckachan GE, Pillai C (2011) Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ 19:637–676

    CAS  Google Scholar 

  15. Devi S, Gupta C, Jat S, Parmar M (2017) Crop residue recycling for economic and environmental sustainability: the case of India. Open Agric 2:486–494

    Google Scholar 

  16. Castro DO, Ruvolo-Filho A, Frollini E (2012) Materials prepared from biopolyethylene and curaua fibers: composites from biomass. Polym Test 31:880–888

    CAS  Google Scholar 

  17. MacMilan JD (1994) Pretreatment of lignocellulosic biomass, ACS symposium series, America, pp 292–324

  18. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CAS  PubMed  Google Scholar 

  19. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mole Sci 9:1621–1651

    CAS  Google Scholar 

  20. Somani A, Nandi TK, Pal SK, Majumder AK (2017) Pre-treatment of rocks prior to comminution—a critical review of present practices. Int J Min Sci Technol 27:339–348

    Google Scholar 

  21. Mirmohamadsadeghi S, Chen Z, Wan C (2016) Reducing biomass recalcitrance via mild sodium carbonate pretreatment. Bioresour Technol 209:386–390

    CAS  PubMed  Google Scholar 

  22. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    CAS  PubMed  Google Scholar 

  23. Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245:419–425

    CAS  PubMed  Google Scholar 

  24. Salehian P, Karimi K, Zilouei H, Jeihanipour A (2013) Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106:484–489

    CAS  Google Scholar 

  25. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    CAS  PubMed  Google Scholar 

  26. da Silva HSP, Ornaghi Júnior HL, Santos Almeida Júnior JH, Zattera AJ, Campos Amico S (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35:1078–1086

    CAS  Google Scholar 

  27. Borges TE, Almeida JHS, Amico SC, Amado FDR (2017) Hollow glass microspheres/piassava fiber-reinforced homo- and co-polypropylene composites: preparation and properties. Polym Bull 74:1979–1993

    CAS  Google Scholar 

  28. Pigatto C, Santos Almeida Júnior JH, Luiz Ornaghi Júnior H, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33:2262–2270

    CAS  Google Scholar 

  29. da Silva LV, Júnior JHSA, Angrizani CC, Amico SC (2013) Short beam strength of curaua, sisal, glass and hybrid composites. J Reinf Plast Compos 32:197–206

    Google Scholar 

  30. Almeida JHS, Amico SC, Botelho EC, Amado FDR (2013) Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos Part B Eng 55:492–497

    CAS  Google Scholar 

  31. Zegaoui A, Derradji M, Ma R, Cai W, Medjahed A, Liu W, Dayo AQ, Wang J, Wang G (2018) Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Mater Chem Phys 213:146–156

    CAS  Google Scholar 

  32. Zehetmeyer G, Soares RM, Brandelli A, Mauler RS, Oliveira RV (2012) Evaluation of polypropylene/montmorillonite nanocomposites as food packaging material. Polym Bull 68:2199–2217

    CAS  Google Scholar 

  33. Hadj-Hamou AS, Metref F, Yahiaoui F (2017) Thermal stability and decomposition kinetic studies of antimicrobial PCL/nanoclay packaging films. Polym Bull 74:3833–3853

    CAS  Google Scholar 

  34. Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74:2401–2430

    Google Scholar 

  35. Zehetmeyer G, Meira SMM, Scheibel JM, da Silva CB, Rodembusch FS, Brandelli A, Soares RMD (2017) Biodegradable and antimicrobial films based on poly (butylene adipate-co-terephthalate) electrospun fibers. Polym Bull 74:3243–3268

    CAS  Google Scholar 

  36. Berthet MA, Angellier-Coussy H, Chea V, Guillard V, Gastaldi E, Gontard N (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part A Appl Sci Manuf 72:139–147

    CAS  Google Scholar 

  37. Asgher M, Ahmad Z, Iqbal HMN (2017) Bacterial cellulose-assisted de-lignified wheat straw-PVA based bio-composites with novel characteristics. Carbohydr Polym 161:244–252

    CAS  PubMed  Google Scholar 

  38. Stelte W, Clemons C, Holm JK, Ahrenfeldt J, Henriksen UB, Sanadi AR (2011) Thermal transitions of the amorphous polymers in wheat straw. Ind Crops Prod 34:1053–1056

    CAS  Google Scholar 

  39. Mussatto SI (2016) Chapter 8—biomass pretreatment with acids. In: Mussatto SI (ed) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam, pp 169–185

    Google Scholar 

  40. Nargotra P, Sharma V, Gupta M, Kour S, Bajaj BK (2018) Application of ionic liquid and alkali pretreatment for enhancing saccharification of sunflower stalk biomass for potential biofuel–ethanol production. Bioresour Technol 267:560–568

    CAS  PubMed  Google Scholar 

  41. Caliari ÍP, Barbosa MHP, Ferreira SO, Teófilo RF (2017) Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Carbohydr Polym 158:20–28

    CAS  PubMed  Google Scholar 

  42. Poormohammadian SJ, Darvishi P, Dezfuli AMG (2018) Investigating the structural effect of electrospun nano-fibrous polymeric films on water vapor transmission. Chin J Chem Eng 27:100–109

    Google Scholar 

  43. Phua YJ, Lau NS, Sudesh K, Chow WS, Mohd Ishak ZA (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354

    CAS  Google Scholar 

  44. Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OEO (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351

    PubMed  Google Scholar 

  45. Râpă M, Miteluţ AC, Tănase EE, Grosu E, Popescu P, Popa ME, Rosnes JT, Sivertsvik M, Darie-Niţă RN, Vasile C (2016) Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Compos Part B Eng 102:112–121

    Google Scholar 

  46. Nitsos CK, Matis KA, Triantafyllidis KS (2013) Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process. Chem Sus Chem 6:110–122 (Epub 2012/11/28)

    CAS  Google Scholar 

  47. Lila MK, Singhal A, Banwait SS, Singh I (2018) A recyclability study of bagasse fiber reinforced polypropylene composites. Polym Degrad Stab 152:272–279

    CAS  Google Scholar 

  48. Guerrica-Echevarría G, Eguiazábal JI, Nazábal J (1996) Effects of reprocessing conditions on the properties of unfilled and talc-filled polypropylene. Polym Degrad Stab 53:1–8

    Google Scholar 

  49. Goshadrou A, Karimi K, Lefsrud M (2013) Characterization of ionic liquid pretreated aspen wood using semi-quantitative methods for ethanol production. Carbohydr Polym 96:440–449

    CAS  PubMed  Google Scholar 

  50. Karimi K, Shafiei M, Kumar R (2013) Progress in physical and chemical pretreatment of lignocellulosic biomass. In: Gupta VK, Tuohy MG (eds) Biofuel technologies: recent developments. Springer, Berlin, pp 53–96

    Google Scholar 

  51. Rashid B, Leman Z, Jawaid M, Ghazali MJ, Ishak MR, Abdelgnei MA (2017) Dry sliding wear behavior of untreated and treated sugar palm fiber filled phenolic composites using factorial technique. Wear 380–381:26–35

    Google Scholar 

  52. Tang CY, Kwon Y-N, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242:168–182

    CAS  Google Scholar 

  53. Baek Y, Kang J, Theato P, Yoon J (2012) Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: a comparative study. Desalination 303:23–28

    CAS  Google Scholar 

  54. Seggiani M, Cinelli P, Mallegni N, Balestri E, Puccini M, Vitolo S, Lardicci C, Lazzeri A (2017) New bio-composites based on polyhydroxyalkanoates and posidonia oceanica fibres for applications in a marine environment. Materials 10:326

    PubMed Central  Google Scholar 

  55. Saravanan S, Akshay Gowda KM, Arul Varman K, Ramamurthy PC, Madras G (2015) In-situ synthesized poly(vinyl butyral)/MMT-clay nanocomposites: the role of degree of acetalization and clay content on thermal, mechanical and permeability properties of PVB matrix. Compos Sci Technol 117:417–427

    CAS  Google Scholar 

  56. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    CAS  Google Scholar 

  57. Perumal AB, Sellamuthu PS, Nambiar RB, Sadiku ER (2018) Development of polyvinyl alcohol/chitosan bio-nanocomposite films reinforced with cellulose nanocrystals isolated from rice straw. Appl Surf Sci 449:591–602

    CAS  Google Scholar 

  58. Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2011) Mechanical and barrier properties of composite films based on rice flour and cellulose fibers. LWT Food Sci Technol 44:535–542

    CAS  Google Scholar 

  59. Kapanen A, Schettini E, Vox G, Itävaara M (2008) Performance and environmental impact of biodegradable films in agriculture: a field study on protected cultivation. J Polym Environ 16:109–122

    CAS  Google Scholar 

  60. Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91:1256–1272

    CAS  Google Scholar 

  61. Briassoulis D (2004) An overview on the mechanical behaviour of biodegradable agricultural films. J Polym Environ 12:65–81

    CAS  Google Scholar 

  62. Alvarez VA, Ruseckaite R, Vazquez A (2006) Degradation of sisal fibre/mater Bi-Y biocomposites buried in soil. Polym Degrad Stab 91:3156–3162

    CAS  Google Scholar 

  63. Amano Y, Nozaki K, Araki T, Shibasaki H, Kuga S, Kanda T (2001) Reactivities of cellulases from fungi towards ribbon-type bacterial cellulose and band-shaped bacterial cellulose. Cellulose 8:267–274

    CAS  Google Scholar 

  64. Żuchowska D, Steller R, Meissner W (1998) Structure and properties of degradable polyolefin-starch blends. Polym Degrad Stab 60:471–480

    Google Scholar 

  65. Sánchez-Safont EL, Aldureid A, Lagarón JM, Gámez-Pérez J, Cabedo L (2018) Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos Part B Eng 145:215–225

    Google Scholar 

  66. Laadila MA, Hegde K, Rouissi T, Brar SK, Galvez R, Sorelli L, Cheikh RB, Paiva M, Abokitse K (2017) Green synthesis of novel biocomposites from treated cellulosic fibers and recycled bio-plastic polylactic acid. J Clean Prod 164:575–586

    CAS  Google Scholar 

  67. Tănase EE, Popa ME, Râpă M, Popa O (2015) PHB/cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Proc 6:608–615

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Laxmi Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., Yadav, V.L. Comparative study of polystyrene/chemically modified wheat straw composite for green packaging application. Polym. Bull. 77, 1307–1326 (2020). https://doi.org/10.1007/s00289-019-02804-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02804-0

Keywords

Navigation