Skip to main content
Log in

Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Protein internal dynamics is essential for its function. Exploring the internal dynamics of protein molecules as well as its connection to protein structure and function is a central topic in biophysics. However, the atomic motions in protein molecules exhibit a great degree of complexities. These complexities arise from the complex chemical composition and superposition of different types of atomic motions on the similar time scales, and render it challenging to explicitly understand the microscopic mechanism governing protein motions, functions, and their connections. Here, we demonstrate that, by using neutron scattering, molecular dynamics simulation, and deuteration technique, one can address this challenge to a large extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johs, A.; Harwood, I. M.; Parks, J. M.; Nauss, R. E.; Smith, J. C.; Liang, L.; Miller, S. M. Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J. Mol. Biol. 2011, 413, 639–656.

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G. S. The hunting of the Src. Nat. Rev. Mol. Cell. Biol. 2001, 2, 47–47.

    Article  Google Scholar 

  3. Banks, R. D.; Blake, C. C.; Evans, P. R.; Haser, R.; Rice, D. W.; Hardy, G. W.; Merrett, M.; Phillips, A. W. Sequence, structure and activity of phosphoglycerate kinase: A possible hinge-bending enzyme. Nature 1979, 279, 773–777.

    Article  CAS  PubMed  Google Scholar 

  4. Rupley, J. A.; Careri, G. Protein hydration and function. In Advances in protein chemistry. Elsevier, 1991, Vol. 41, p. 37–172

    Article  CAS  PubMed  Google Scholar 

  5. Bellissent-Funel, M. C.; Hassanali, A.; Havenith, M.; Henchman, R.; Pohl, P.; Sterpone, F.; van der Spoel, D.; Xu, Y.; Garcia, A. E. Water determines the structure and dynamics of proteins. Chem. Rev. 2016, 116, 7673–7679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hans, F.; Guo, C.; Joel, B.; Fenimore, P. W.; Helén, J.; Mcmahon, B. H.; Stroe, I. R.; Jan, S.; Young, R. D. A unified model of protein dynamics. Proc. Natl. Acad. Sci. 2009, 106, 5129–5134.

    Article  Google Scholar 

  7. Biman, B. Water dynamics in the hydration layer around proteins and micelles. Chem. Rev. 2005, 105, 3197–3219.

    Article  CAS  Google Scholar 

  8. Ball, P. Water and life: Seeking the solution. Nature 2005, 436, 1084–1085.

    Article  CAS  PubMed  Google Scholar 

  9. Pocker, Y. Water in enzyme reactions: Biophysical aspects of hydration-dehydration processes. Cell. Mol. Life Sci. 2000, 57, 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  10. Jian, P.; Todd, S.; Ning, Z.; Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 2011, 475, 353–358.

    Article  CAS  Google Scholar 

  11. Pawlus, S.; Khodadadi, S.; Sokolov, A. P. Conductivity in hydrated proteins: No signs of the fragile-to-strong crossover. Phys. Rev. Lett. 2008, 100, 2197–2204.

    Article  CAS  Google Scholar 

  12. Otting, G.; Liepinsh, E.; Wuthrich, K. Protein hydration in aqueous solution. Science 1991, 254, 974–980.

    Article  CAS  PubMed  Google Scholar 

  13. Valeria, C. N.; Martina, H. New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J. Am. Chem. Soc. 2014, 136, 12800–12807.

    Article  CAS  Google Scholar 

  14. Yang, J.; Wang, Y.; Wang, L.; Zhong, D. Mapping hydration dynamics around a β-barrel protein. J. Am. Chem. Soc. 2017, 139, 4399–4408.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, C.; Stevens, B.; Kaur, J.; Cabral, D.; Liu, H.; Wang, Y.; Zhang, H.; Rosenblum, G.; Smilansky, Z.; Goldman, Y. E. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol. Cell 2011, 42, 367–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J. C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv. 2016, 2, e1600886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong, L.; Sharp, M. A.; Poblete, S.; Biehl, R.; Zamponi, M.; Szekely, N.; Appavou, M. S.; Winkler, R. G.; Nauss, R. E.; Johs, A.; Parks, J. M.; Yi, Z.; Cheng, X.; Liang, L.; Ohl, M.; Miller, S. M.; Richter, D.; Gompper, G.; Smith, J. C. Structure and dynamics of a compact state of a multidomain protein, the mercuric ion reductase. Biophys. J. 2014, 107, 393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong, L.; Smolin, N.; Lindner, B.; Sokolov, A. P.; Smith, J. C. Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein. Phys. Rev. Lett. 2011, 107, 148102.

    Article  CAS  PubMed  Google Scholar 

  19. Hong, L.; Smolin, N.; Smith, J. C. de Gennes narrowing describes the relative motion of protein domains. Phys. Rev. Lett. 2014, 112, 158102.

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Z.; Huang, J.; Tyagi, M.; O'Neill, H.; Zhang, Q.; Mamontov, E.; Jain, N.; Wang, Y.; Zhang, J.; Smith, J. C.; Hong, L. Dynamical transition of collective motions in dry proteins. Phys. Rev. Lett. 2017, 119, 048101.

    Article  PubMed  Google Scholar 

  21. Nickels, J. D.; O'Neill, H.; Hong, L.; Tyagi, M.; Ehlers, G.; Weiss, K. L.; Zhang, Q.; Yi, Z.; Mamontov, E.; Smith, J. C.; Sokolov, A. P. Dynamics of protein and its hydration water: Neutron scattering studies on fully deuterated GFP. Biophys. J. 2012, 103, 1566–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tan, P.; Liang, Y.; Xu, Q.; Mamontov, E.; Li, J.; Xing, X.; Hong, L. Gradual crossover from subdiffusion to normal diffusion: A many-body effect in protein surface water. Phys. Rev. Lett. 2018, 120, 248101.

    Article  CAS  PubMed  Google Scholar 

  23. Hong, L.; Cheng, X.; Glass, D. C.; Smith, J. C. Surface hydration amplifies single-well protein atom diffusion propagating into the macromolecular core. Phys. Rev. Lett. 2012, 108, 238102.

    Article  CAS  PubMed  Google Scholar 

  24. Hong, L.; Glass, D. C.; Nickels, J. D.; Perticaroli, S.; Yi, Z.; Tyagi, M.; O'Neill, H.; Zhang, Q.; Sokolov, A. P.; Smith, J. C. Elastic and conformational softness of a globular protein. Phys. Rev. Lett. 2013, 110, 028104.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Z.; Yang, C.; Huang, J.; Ciampalini, G.; Li, J.; García Sakai, V.; Tyagi, M.; O'Neill, H.; Zhang, Q.; Capaccioli, S.; Ngai, K. L.; Hong, L. Direct experimental characterization of contributions from self-motion of hydrogen and from interatomic motion of heavy atoms to protein anharmonicity. J. Phys. Chem. B 2018, 122, 9956–9961.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Z.; Lemmonds, S.; Huang, J.; Tyagi, M.; Hong, L.; Jain, N. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Proc. Natl. Acad. Sci. 2018, 115, E10049–E10058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buchenau, U.; Wischnewski, A.; Richter, D.; Frick, B. Is the fast process at the glass transition mainly due to long wavelength excitations? Phys. Rev. Lett. 1996, 77, 4035–4038.

    Article  CAS  Google Scholar 

  28. Nickels, J. D.; Perticaroli, S.; O'Neill, H.; Zhang, Q.; Ehlers, G.; Sokolov, A. P. Coherent neutron scattering and collective dynamics in the protein, GFP. Biophys. J. 2013, 105, 2182–2187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carpenter, J. M.; Pelizzari, C. A. Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for model structures. Phys. Rev. B 1975, 12, 2391.

    Google Scholar 

  30. Suhre, K.; Sanejouand, Y. H. ElNémo: A normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 2004, 32, W610–W614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khodadadi, S.; Pawlus, S.; Sokolov, A. P. Influence of hydration on protein dynamics: Combining dielectric and neutron scattering spectroscopy data. J. Phys. Chem. B 2008, 112, 14273–14280.

    Article  CAS  PubMed  Google Scholar 

  32. Modig, K.; Liepinsh, E.; Otting, G.; Halle, B. Dynamics of protein and peptide hydration. J. Am. Chem. Soc. 2004, 126, 102–114.

    Article  CAS  PubMed  Google Scholar 

  33. Ebbinghaus, S.; Kim, S. J.; Heyden, M.; Yu, X.; Heugen, U.; Gruebele, M.; Leitner, D. M.; Havenith, M. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. 2007, 104, 20749–20752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King, J. T.; Kubarych, K. J. Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy. J. Am. Chem. Soc. 2012, 134, 18705–18712.

    Article  CAS  PubMed  Google Scholar 

  35. Vitkup, D.; Ringe, D.; Petsko, G. A.; Karplus, M. Solvent mobility and the protein ‘glass’ transition. Nat. Struct. Biol. 2000, 7, 34–38.

    Article  CAS  PubMed  Google Scholar 

  36. Roh, J. H.; Curtis, J. E.; Azzam, S.; Novikov, V. N.; Peral, I.; Chowdhuri, Z.; Gregory, R. B.; Sokolov, A. P. Influence of hydration on the dynamics of lysozyme. Biophys. J. 2006, 91, 2573–2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rasmussen, B. F.; Stock, A. M.; Ringe, D.; Petsko, G. A. Crystalline ribonuclease A loses function below the dynamic transition at 220 K. Nature 1992, 357, 423–424.

    Article  CAS  PubMed  Google Scholar 

  38. He, Y.; Ku, P. I.; Knab, J. R.; Chen, J. Y.; Markelz, A. G. Protein dynamical transition does not require protein structure. Phys. Rev. Lett. 2008, 101, 178103.

    Article  CAS  PubMed  Google Scholar 

  39. Ferrand, M.; Dianoux, A. J.; Petry, W.; Zaccaï, G. Thermal motions and function of bacteriorhodopsin in purple membranes: Effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. 1993, 90, 9668–9672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11504231 and 31630002), and the Innovation Program of Shanghai Municipal Education Commission. The authors acknowledge the Center for High Performance Computing at Shanghai Jiao Tong University for computing resources, and the student innovation center at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, LR., Hong, L. Combining Neutron Scattering, Deuteration Technique, and Molecular Dynamics Simulations to Study Dynamics of Protein and Its Surface Water Molecules. Chin J Polym Sci 37, 1083–1091 (2019). https://doi.org/10.1007/s10118-019-2312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2312-2

Keywords

Navigation