Skip to main content
Log in

Ultrafast Nano-scale Optical Switching in a Plasmonic Interferometer with Enhanced Tunability

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An all-optical switch based on plasmonic metal–insulator–metal (MIM) waveguides and the Mach–Zehnder (MZ) interferometer is designed. In order to realize an all-optical and active switch, a nonlinear material with intensity-dependent refractive index is introduced in one arm. Other than studying a typical MZ structure, we also investigate the asymmetric case where unequal thicknesses and distances for MZ arms are proposed. The finite element method (FEM) with a refined triangle mesh is employed for simulations. Results for ON and OFF states are provided with or without employing the pump field. Investigation of the geometrical dispersion reveals tunability of the structure for specific frequencies in the terahertz region. Finally, we show that introducing asymmetric arms provides better tunability in the designed ultrafast nano-scale switch and suggests its potential applications in integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91. https://doi.org/10.1038/nphoton.2009.282

    Article  CAS  Google Scholar 

  2. Bozhevolnyi SI (2008) "Plasmonic nano-guides and circuits." Plasmonics and Metamaterials. Optical Society of America.

  3. Maier SA (2004) Fundamentals and applications Plasmonics: fundamentals and applications, vol 677. https://doi.org/10.1016/j.aca.2010.06.020

  4. Ohashi K, Nishi K, Shimizu T, Nakada M, Fujikata J, Ushida J, Torii S, Nose K, Mizuno M, Yukawa H, Kinoshita M, Suzuki N, Gomyo A, Ishi T, Okamoto D, Furue K, Ueno T, Tsuchizawa T, Watanabe T, Yamada K, Itabashi SI, Akedo J (2009) On-chip optical interconnect. Proc IEEE 97(7):1186–1196. https://doi.org/10.1109/JPROC.2009.2020331

    Article  CAS  Google Scholar 

  5. Enoch S, Bonod N (2012) Plasmonic from basic to advanced topics. Springer Ser Opt Sci 167:151–176. https://doi.org/10.1007/978-3-642-28079-5_5

  6. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4). https://doi.org/10.1103/PhysRevLett.95.046802

  7. Dobrzynski L, Maradudin AA (1972) Electrostatic edge modes in a dielectric wedge. Phys Rev B 6(10):3810–3815. https://doi.org/10.1103/PhysRevB.6.3810

    Article  CAS  Google Scholar 

  8. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500. https://doi.org/10.1038/nphoton.2008.131

    Article  CAS  Google Scholar 

  9. Wang G, Lu H, Liu X, Gong (2012) Numerical investigation of an all-optical switch in a graded nonlinear plasmonic grating. Nanotechnology 23(44):444009. https://doi.org/10.1088/0957-4484/23/44/444009

    Article  PubMed  Google Scholar 

  10. Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17(16):13989–13994. https://doi.org/10.1364/OE.17.013989

    Article  CAS  PubMed  Google Scholar 

  11. Lin X-S, Huang X-G (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876. https://doi.org/10.1364/OL.33.002874

    Article  PubMed  Google Scholar 

  12. Lin X, Huang X (2009) Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter. Josab. 26(7):1263–1268. https://doi.org/10.1364/JOSAB.26.001263

    Article  CAS  Google Scholar 

  13. He M, Liu J, Gong Z, Luo Y, Chen X, Lu W (2010) Plasmonic splitter based on the metal-insulator-metal waveguide with periodic grooves. Opt Commun 283(9):1784–1787. https://doi.org/10.1016/j.optcom.2009.12.076

    Article  CAS  Google Scholar 

  14. Ren M, Zhong X, Chen B, Li Z (2013) An all-optical diode based on plasmonic attenuation and nonlinear frequency conversion. Chin Phys Lett 3.9:1–19

    Google Scholar 

  15. Han Z, Herman WN, Ho P (2009) Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt Express 17(15):12678–12684. https://doi.org/10.1364/OE.17.012678

    Article  CAS  PubMed  Google Scholar 

  16. Laluet J, Ebbesen TW, Bozhevolnyi SI, Volkov VS (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511. https://doi.org/10.1038/nature04594

    Article  CAS  PubMed  Google Scholar 

  17. Han Z, Forsberg E (2006) Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons. Optics Commun 259:690–695. https://doi.org/10.1016/j.optcom.2005.09.034

    Article  CAS  Google Scholar 

  18. Nemova G, Kabashin AV, Kashyap R (2008) Surface plasmon-polariton Mach-Zehnder refractive index sensor. J Opt Soc Am B 25(10):1673. https://doi.org/10.1364/JOSAB.25.001673

    Article  CAS  Google Scholar 

  19. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81(10):1762–1764. https://doi.org/10.1063/1.1506018

    Article  CAS  Google Scholar 

  20. Fang M, Shi F, Chen Y (2016) Unidirectional all-optical absorption switch based on optical Tamm state in nonlinear plasmonic waveguide. Plasmonics. 11(1):197–203. https://doi.org/10.1007/s11468-015-0042-z

    Article  CAS  Google Scholar 

  21. Cai W, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9(12):4403–4411. https://doi.org/10.1021/nl902701b

    Article  CAS  PubMed  Google Scholar 

  22. Pala RA, Shimizu KT, Melosh NA, Brongersma ML (2008) A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett 8(5):1506–1510. https://doi.org/10.1021/nl0808839

    Article  CAS  PubMed  Google Scholar 

  23. Palomba S, Novotny L (2008) Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys Rev Lett 101(5):2–5. https://doi.org/10.1103/PhysRevLett.101.056802

    Article  CAS  Google Scholar 

  24. Lee J, Tymchenko M, Argyropoulos C, Chen PY, Lu F, Demmerle F, Boehm G, Amann MC, Alù A, Belkin MA (2014) Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature. 511(7507):65–69. https://doi.org/10.1038/nature13455

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y-D, Huang M-L, Chen M-H, Tasy R-Z (2007) All-optical switch based on the local nonlinear Mach-Zehnder interferometer. Opt Express 15(16):9883–9892. https://doi.org/10.1364/OE.15.009883

    Article  PubMed  Google Scholar 

  26. Wiederrecht GP, Hranisavljevic J (2009) Ultrafast energy flow in hybrid plasmonic materials, Proceedings of SPIE - the International Society for Optical Engineering. Proceedings Volume 7395, Plasmonics: Nanoimaging, Nanofabrication, and their Applications V; 73950G. https://doi.org/10.1117/12.825179

  27. Chowdhury DR, Azad AK, Zhang W, Singh R (2013) Near field coupling in passive and active terahertz metamaterial devices. IEEE Trans Terahertz Sci Technol 3:783–790. https://doi.org/10.1109/TTHZ.2013.2285569

    Article  CAS  Google Scholar 

  28. Singh L, Kumar S, Kaushik B-K (2019) All-optical switching device using Plasmonic Mach-Zehnder interferometer structure. J Opt Commun. https://doi.org/10.1515/joc-2018-0215

  29. Nurmohammadi T, Abbasian K, Yadipour R (2018) Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator. Opt Commun 410:142–147. https://doi.org/10.1016/j.optcom.2017.09.082

    Article  CAS  Google Scholar 

  30. Thidé B (2004) Electromagnetic field theory. Physics (College Park Md) 21(2):203. https://doi.org/10.1007/978-3-8348-2178-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kheradmand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maragheh, S.A., Olyaeefar, B. & Kheradmand, R. Ultrafast Nano-scale Optical Switching in a Plasmonic Interferometer with Enhanced Tunability. Plasmonics 15, 435–439 (2020). https://doi.org/10.1007/s11468-019-01039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01039-z

Keywords

OCIS Codes

Navigation