Skip to main content
Log in

Theoretical calculation into the structures, stability, sensitivity, and mechanical properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazai-sowurtzitane (CL-20)/1-amino-3-methyl-1,2,3-triazoliumnitrate (1-AMTN) cocrystal and its mixture

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulation was conducted to research the effect of temperature (200–350 K) on the thermal stability, sensitivity, and mechanical properties of 1-AMTN (1-amino-3-methyl-1,2,3-triazoliumnitrate), CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazai-sowurtzitane), cocrystal, and composite explosive. The binding energy, the maximum trigger bond length (\( {L}_{N-{NO}_2} \)), and cohesive energy density (CED), as well mechanical properties of the pure CL-20, 1-AMTN, cocrystal, and composite, were got and contrasted. The results demonstrate that temperature has a great influence on the binding capacity between CL-20 and 1-AMTN molecules in the cocrystal. The binding energies decrease with the rising temperature and the cocrystal has larger values than those of mixture. The \( {L}_{N-{NO}_2} \)of all models increases and the CEDs decrease with the rising temperature, demonstrating that their sensitivities increase. While the \( {L}_{N-{NO}_2} \) values of cocrystals are all smaller than those of CL-20 and the CED values are all between those of CL-20 and 1-AMTN, indicating that the sensitivity has been reduced through co-crystallization. The mechanical properties of all models have an evident downtrend. Simultaneously, the tensile modulus (E), bulk modulus (K), and shear modulus (G) values of the cocrystal model are between those of CL-20 and 1-AMTN at the same temperature, thus co-crystallization can weaken the brittleness and enhance the ductility of CL-20. Compared with the mixture, the cocrystal has better ductility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Zhang X, Chen S, Wu Y, Jin S, Wang X et al (2018) A novel cocrystal composed of 1.CL-20 and an energetic ionic salt. Chem Commun 54:13268–13270

    CAS  Google Scholar 

  2. Bayat Y, Zarandi M, Zarei M, Soleyman R (2014) A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J Mol Liq 193:83–86

    CAS  Google Scholar 

  3. Bayat Y, Zeynali V (2011) Preparation and characterization of nano-CL-20 explosive. J Energ Mater 29:281–291

    CAS  Google Scholar 

  4. Elbeih A, Husarova A, Zeman S (2011) Path to ε-HNIW with reduced impact sensitivity. Cent. Eur. J Energ Mater 8:173–182

    CAS  Google Scholar 

  5. Guo X, Ouyang G, Liu J, Li Q, Wang L et al (2015) Massive preparation of reduced-sensitivity nano CL-20 and its characterization. J Energ Mater 33:24–33

    CAS  Google Scholar 

  6. Kröber H, Teipel U (2008) Crystallization of insensitive HMX. Propellants, Explos, Pyrotech 33:33–36

    Google Scholar 

  7. Liu J, Jiang W, Yang Q, Song J, Hao GZ, Li FS (2014) Study of nano-nitramine explosives: preparation, sensitivity and application. Def Technol 10:184–189

    CAS  Google Scholar 

  8. Ma S, Li Y, Li Y, Luo Y (2016) Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Model 22:43

    PubMed  CAS  Google Scholar 

  9. Ma Z, Gao B, Wu P, Shi J, Qiao Z et al (2015) Facile, continuous and large-scale production of core–shell HMX@ TATB composites with superior mechanical properties by a spray-drying process. RSC Adv 5:21042–21049

    CAS  Google Scholar 

  10. Nandi AK, Ghosh M, Sutar VB, Pandey RK (2012) Surface coating of cyclotetramethylenetetranitramine (HMX) crystals with the insensitive high explosive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB). Cent Eur J Energ Mater 9:119–130

    CAS  Google Scholar 

  11. Yu Y, Chen S, Li X, Zhu J, Liang H et al (2016) Molecular dynamics simulations for 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) and its PBXs. RSC Adv 6:20034–20041

    CAS  Google Scholar 

  12. Gao H, Jiang W, Liu J, Hao G, Xiao L et al (2017) Synthesis and characterization of a new co-crystal explosive with high energy and good sensitivity. J Energ Mater 35:490–498

    CAS  Google Scholar 

  13. Ghosh M, Sikder AK, Banerjee S, Gonnade RG (2018) Studies on CL-20/HMX (2:1) cocrystal: a new preparation method and structural and thermokinetic analysis. Cryst Growth Des 18:3781–3793

    CAS  Google Scholar 

  14. Song X, Wang Y, Zhao S, Li F (2018) Mechanochemical fabrication and properties of CL-20/RDX nano co/mixed crystals. RSC Adv 8:34126–34135

    CAS  Google Scholar 

  15. Tao J, Jin B, Chu S, Peng R, Shang Y, Tan B (2018) Novel insensitive energetic-cocrystal-based BTO with good comprehensive properties. RSC Adv 8:1784–1790

    CAS  Google Scholar 

  16. Wu J, Zhang J, Li T, Li Z, Zhang T (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    CAS  Google Scholar 

  17. Xu H, Duan X, Li H, Pei C (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    CAS  Google Scholar 

  18. Zhang Z, Li T, Yin L, Yin X, Zhang J (2016) A novel insensitive cocrystal explosive BTO/ATZ: preparation and performance. RSC Adv 6:76075–76083

    CAS  Google Scholar 

  19. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    CAS  Google Scholar 

  20. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem 50:8960–8963

    CAS  Google Scholar 

  21. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    PubMed  CAS  Google Scholar 

  22. Liu K, Zhang G, Luan J, Chen Z, Su P, Shu Y (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 1110:91–96

    CAS  Google Scholar 

  23. Liu Y, An C, Luo J, Wang J (2018) High-density HNIW/TNT cocrystal synthesized using a green chemical method. Acta. Crystallogr. Sect. B: Struct. Crystallogr Cryst Chem 74:385–393

    CAS  Google Scholar 

  24. Shen JP, Duan XH, Luo QP, Zhou Y, Bao Q et al (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    CAS  Google Scholar 

  25. Wang Y, Yang Z, Li H, Zhou X, Zhang Q et al (2014) A novel cocrystal explosive of HNIW with GOOD COMPREHENSIVE PROPERTIes. Propellants, Explos, Pyrotech 39:590–596

    CAS  Google Scholar 

  26. Aldoshin SM, Aliev ZG, Goncharov TK, Milyokhin YM, Shishov NI et al (2014) Crystal structure of cocrystals 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazatetracyclo [5.5. 0.0 5.9. 0 3.11] dodecane with 7H-tris-1, 2, 5-oxadiazolo (3, 4-b: 3′, 4′-d: 3 ″, 4 ″-f) azepine. J Struct Chem 55:327–331

    CAS  Google Scholar 

  27. Anderson SR, Dube P, Krawiec M, Salan J, Ende DJA, Samuels P (2016) Promising CL-20-based energetic material by cocrystallization. Propellants, Explos, Pyrotech 41:783–788

    CAS  Google Scholar 

  28. Goncharov TK, Aliev ZG, Aldoshin SM, Dashko DV, Eva AAV et al (2015) Preparation, structure, and main properties of bimolecular crystals CL-20—DNP and CL-20—DNG. Russ Chem B 64:366–374

    CAS  Google Scholar 

  29. Xiong S, Chen S, Jin S, Zhang C (2016) Molecular dynamics simulations on dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Adv 6:4221–4226

    CAS  Google Scholar 

  30. Yang Z, Li H, Zhou X, Zhang C, Huang H et al (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    CAS  Google Scholar 

  31. Yang Z, Wang H, Ma Y, Huang Q, Zhang J et al (2018) Isomeric cocrystals of CL-20: a promising strategy for development of high-performance explosives. Cryst Growth Des 18:6399–6403

    CAS  Google Scholar 

  32. Guo C, Zhang H, Wang X, Xu J, Liu Y et al (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    CAS  Google Scholar 

  33. Lin H, Zhu S, Li H, Peng X (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348

    CAS  Google Scholar 

  34. Lin H, Zhu S, Zhang L, Peng X, Hongzhen LI (2013) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    CAS  Google Scholar 

  35. Lin H, Chen J, Zhu S, Li H, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    CAS  Google Scholar 

  36. Liu N, Duan B, Lu X, Mo H, Xu M et al (2018) Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst Eng Comm 20:2060–2067

    CAS  Google Scholar 

  37. Pan B, Dang L, Wang Z, Jiang J, Wei H (2018) Preparation, crystal structure and solutionmediated phase transformation of a novel solidstate form of CL-20. Cryst Eng Comm 20:1553–1563

    CAS  Google Scholar 

  38. Sun H (1998) COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    CAS  Google Scholar 

  39. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489

    CAS  Google Scholar 

  40. Drake G, Kaplan G, Hall L, Hawkins T, Larue J (2007) A new family of energetic ionic liquids 1-amino-3-alkyl-1,2,3-triazolium nitrates. J Chem Crystallogr 37:15–23

    CAS  Google Scholar 

  41. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP et al (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    CAS  Google Scholar 

  42. Studio M (2017) Accelrys Inc., San Diego. CA 2017

  43. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76:637–649

    CAS  Google Scholar 

  44. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    CAS  Google Scholar 

  45. Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phys 76:2662–2666

    CAS  Google Scholar 

  46. Ewald PP (1921) Calculation of Optic and Electrostatic Lattice Potential. Ann Phys 64:253–287

    Google Scholar 

  47. Brooks III CL, Pettitt BM, Karplus M (1985) Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. J Chem Phys 83:5897–5908

    CAS  Google Scholar 

  48. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 23:30

    PubMed  Google Scholar 

  49. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Theoretical insights into effects of molar ratios on stabilities, mechanical properties and detonation performance of CL-20/RDX cocrystal explosives by molecular dynamics simulation. J Mol Struct 1141:577–583

    CAS  Google Scholar 

  50. Lu Y, Shu Y, Ning L, Lu X, Xu M (2018) Molecular dynamics simulations on ε-CL-20-based PBXs with added GAP and its derivative polymers. Rsc Adv 8:4955–4962

    CAS  Google Scholar 

  51. Yan L, Xuedong G, Lianjun W, Guixiang W, Heming X (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2',4,4',6,6'-hexanitroazobenzene derivatives. J Phys Chem 115:1754–1762

    Google Scholar 

  52. Stefan G (2010) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Google Scholar 

  53. Rice JR (1972) Eng Fract Mech, p 1019

    Google Scholar 

  54. Swenson RJ (1983) Comments on virial theorems for bounded systems. Am J Phys 51:940–942

    CAS  Google Scholar 

  55. Watt JP, Davies GF, O'Connell RJ (1976) The elastic properties of composite materials. Rev Geophys 14:541–563

    CAS  Google Scholar 

  56. Hang G-Y, Yu W-L, Wang T, Li Z (2018) Theoretical investigation of the structures and properties of CL-20/DNB cocrystal and associated PBXs by molecular dynamics simulation. J Mol Model 24:97

    PubMed  Google Scholar 

  57. Hang G-Y, Yu W-L, Wang T, Wang J-T (2019) Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 25:10

    PubMed  Google Scholar 

  58. Shu Y, Zhang S, Shu Y, Liu N, Yi Y et al (2019) Interactions and physical properties of energetic poly-(phthalazinone ether sulfone ketones)(PPESKs) and ε-hexanitrohexaazaisowurtzitane (ε-CL-20) based polymer bonded explosives: a molecular dynamics simulations. Struct Chem 30:1041–1055

    CAS  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China under grant nos. 11775195,11405152, and U173020001. We also would like to acknowledge the Science Challenge Project No. TZ2016001 and the Project from China Academy of Engineering Physics No. ESHT-KY-2015-71. The calculation resources in the Simulation Center of CAEP are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Bai, L., Gong, J. et al. Theoretical calculation into the structures, stability, sensitivity, and mechanical properties of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12 hexaazai-sowurtzitane (CL-20)/1-amino-3-methyl-1,2,3-triazoliumnitrate (1-AMTN) cocrystal and its mixture. Struct Chem 31, 647–655 (2020). https://doi.org/10.1007/s11224-019-01447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01447-1

Keywords

Navigation