Skip to main content
Log in

Molecular Organization of Yeast Cell Envelope

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

This review summarizes the main achievements of recent years in molecular organization research of yeast cell surface, i.e., the compartment that consists of the coordinately functioning plasma membrane, periplasmic space, and cell wall. There are data on vesicular transport to the external environment through the cell wall and the formation of channels in the wall, which indicate the possibility of dynamic rearrangements of the molecular structure of the yeast cell wall. There is an idea about the mosaic arrangement of the compartments of the plasma membrane. The hypothesis has been suggested on the heterogeneity of the molecular structure of the cell wall, which is usually considered as uniform except for the budding zones. The groups of proteins that form the molecular assembly of the yeast cell surface have been described. Special attention has been paid for proteins with amyloid properties, including Bgl2p glucanosyltransglycosylase, which is important for virulence in pathogenic yeast, and Gas1p, the first of the studied proteins of the cell surface, which is involved in the regulation of ribosomal DNA transcriptional silencing. The data on the structure of receptors localized on the cell surface and the “moonlight” proteins, involved in the cell stress response of yeasts, have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Lesage G., Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiae.Microbiol. Mol. Biol. Rev.70, 317‒343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaffin W.L. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev.72, 495‒544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics.192, 775‒818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Merzendorfer H., Heinisch J.J. 2013. Microcompartments within the yeast plasma membrane. Biol. Chem.394 (2), 189‒202.

    Article  CAS  PubMed  Google Scholar 

  5. Douglas L.M., Konopka J.B. 2014. Fungal membrane organization: The eisosome concept. Annu. Rev. Microbiol. 68, 377‒393.

    Article  CAS  PubMed  Google Scholar 

  6. Klis F.M., de Koster C.G., Brul S. 2014. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans.Eukaryot. Cell.13 (1), 2‒9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Francois J.M. 2016. Cell surface interference with plasma membrane and transport processes in yeasts. Adv. Exp. Med. Biol. 892, 11‒31.

    Article  CAS  PubMed  Google Scholar 

  8. Okada H., Kono K., Neiman A.M., Ohya Y. 2016. Examination and disruption of the yeast cell wall. Cold Spring Harb. Protoc. 8. https://doi.org/10.1101/pdb.top078659

    Article  Google Scholar 

  9. Gow N.A.R., Latge J.P., Munro C.A. 2017. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 5 (3), FUNK-0035-2016.

  10. Manners D.J., Masson A.J., Patterson J.C. 1973. The structure of a β-(1,3)-D-glucan from yeast cell walls. Biochem. J.135, 19‒30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fleet G.H., Manners D.J. 1976. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae.J. Gen. Microbiol. 94 (1), 180‒192.

    Article  CAS  PubMed  Google Scholar 

  12. Kollar R., Reinhold B.B., Petrakova E., Yeh H.J.C., Ashwell G., Drgonova J., Kapteyn J.C., Klis F.M., Cabib E. 1997. Architecture of the yeast cell wall. β-(1-6)-Glucan interconnects mannoprotein, β-(1-3)-glucan and chitin. J. Biol. Chem. 272, 17762‒17775.

    Article  CAS  PubMed  Google Scholar 

  13. Matveev A.L., Krylov V.B., Khlusevich Y.A., Baykov I.K., Yashunsky D.V., Emelyanova L.A., Tsvetkov Y.E., Karelin A.A., Bardashova A.V., Wong S.S.W., Aimanianda V., Latgé J.P., Tikunova N.V., Nifantiev N.E. 2019. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One.14 (4), e0215535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kapteyn J.C., Van Den Ende H., Klis F.M. 1999. The contribution of cell wall proteins to the organization of the yeast cell wall. Biophys. Biochem. Acta.1426, 373‒383.

    Article  CAS  Google Scholar 

  15. Kalebina T.S., Kulaev I.S. 2001. The role of proteins in the formation of the molecular structure of yeast cell wall. Usp. Biol. Chem.41, 105‒130.

    CAS  Google Scholar 

  16. Levin D.E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway. Genetics.189 (4), 1145‒1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cabib E., Arroyo J. 2013. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat. Rev. Microbiol.11, 648‒655.

    Article  CAS  PubMed  Google Scholar 

  18. Mrsă V., Seidl T., Gentzsch M., Tanner W. 1997. Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae.Yeast.30, 1145‒1154.

    Article  Google Scholar 

  19. Kapteyn J.C., Ram A.F.J., Groos E.M., Kollar R., Montijn R.C., Van Den Ende H., Llobell A., Cabib E., Klis F.M. 1997. Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β-1,3-glucan content. J. Bacteriol.179, 6279‒6284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ecker M., Deutzmann R., Lehle L., Mrsa V., Tanner W. 2006. Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage. J. Biol. Chem. 281, 11523‒11529.

    Article  CAS  PubMed  Google Scholar 

  21. Molon M., Woznicka O., Zebrowski J. 2018. Cell wall biosynthesis impairment affects the budding lifespan of the Saccharomyces cerevisiae yeast. Biogerontology. 19 (1), 67–79.

    Article  CAS  PubMed  Google Scholar 

  22. Kalebina T.S., Plotnikova T.A., Gorkovskii A.A., Selyakh I.O., Galzitskaya O.V., Bezsonov E.E., Gellissen G., Kulaev I.S. 2008. Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: Prediction and experimental evidences. Prion. 2 (2), 91–96.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Otoo H.N., Lee K.G., Qiu W., Lipke P.N. 2008. Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell.7 (5), 776–782.

    Article  CAS  PubMed  Google Scholar 

  24. Bezsonov E.E., Kalebina T.S., Gorkovskii A.A., Kudryashova I.B., Semisotnov G.V., Kulaev I.S. 2010. Temperature-induced conformational transitions of the glucantransferase Bgl2p isolated from Saccharomyces cerevisiae cell walls. Mol. Biol. (Moscow). 44 (3), 499‒491.

    Article  CAS  Google Scholar 

  25. Bezsonov E.E., Groenning M., Galzitskaya O.V., Gorkovskii A.A., Semisotnov G.V., Selyakh I.O., Ziganshin R.H., Rekstina V.V., Kudryashova I.B., Kuznetsov S.A., Kulaev I.S., Kalebina T.S. 2013. Amyloidogenic peptides of yeast cell wall glucantransferase Bgl2p as a model for the investigation of its pH-dependent fibril formation. Prion.7 (2), 175‒184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Selivanova O.M., Glyakina A.V., Gorbunova E.Y., Mustaeva L.G., Suvorina M.Y., Grigorashvili E.I., Nikulin A.D., Dovidchenko N.V., Rekstina V.V., Kalebina T.S., Surin A.K., Galzitskaya O.V. 2016. Amyloid fibrils for amyloidogenic peptide from Bgl2p-glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils. Biochim. Biophys. Acta.1864 (11), 1489‒1499.

  27. Tartaglia G.G., Caflisch A. 2007. Computational analysis of the S. cerevisiae proteome reveals the function and cellular localization of the least and most amyloidogenic proteins. Proteins. 68 (1), 273–278.

    Article  CAS  PubMed  Google Scholar 

  28. Willaert R.G. 2018. Adhesins of yeasts: Protein structure and interactions. J. Fungi (Basel). 4 (4), pii: E119.

    Article  CAS  Google Scholar 

  29. Lipke P.N. 2018. What we do not know about fungal cell adhesion molecules. J. Fungi (Basel). 4 (2), pii: E59.

    Article  CAS  Google Scholar 

  30. Hoyer L.L., Cota E. 2016. Candida albicans agglutinin-like sequence (Als) family vignettes: A review of Als protein structure and function. Front. Microbiol. 7, 280.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nobile C.J., Mitchell A.P. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol.8 (9), 1382–1391.

    Article  CAS  PubMed  Google Scholar 

  32. Nobile C.J., Johnson A.D. 2015. Candida albicans biofilms and human disease. Annu. Rev. Microbiol.69, 71–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sarthy A.V., McGonigal T., Coen M., Frost D.J., Meulbroek J.A., Goldman R.C. 1997. Phenotype in Candida albicans of a disruption of the BGL2 gene encoding a 1,3-beta-glucosyltransferase. Microbiology.143 (Pt. 2), 367‒376.

    Article  CAS  PubMed  Google Scholar 

  34. Alves C.T., Wei X.Q., Silva S., Azeredo J., Henriques M., Williams D.W. 2014. Candida albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human vaginal epithelium. J. Infect.69 (4), 396‒407.

    Article  PubMed  Google Scholar 

  35. Modrzewska B., Kurnatowski P. 2015. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann. Parasitol.61 (1), 3‒9.

    PubMed  Google Scholar 

  36. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W.A., Diaquin M., Popolo L., Hartland R.P., Latgé J.P. 2000. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem.275 (20), 14882-14889.

    Article  CAS  PubMed  Google Scholar 

  37. Mazáň M., Ragni E., Popolo L., Farkaš V. 2011. Catalytic properties of the Gas family β-(1,3)-glucanosyltransferases active in fungal cell-wall biogenesis as determined by a novel fluorescent assay. Biochem. J.438 (2), 275‒282.

    Article  PubMed  CAS  Google Scholar 

  38. Aimanianda V., Simenel C., Garnaud C., Clavaud C., Tada R., Barbin L., Mouyna I., Heddergott C., Popolo L., Ohya Y., Delepierre M., Latge J.P. 2017. The dual activity responsible for the elongation and branching of β‑(1,3)-glucan in the fungal cell wall. mBio.8 (3), e00619-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ryzhova T.A., Sopova J.V., Zadorsky S.P., Siniukova V.A., Sergeeva A.V., Galkina S.A. Nizhnikov A.A., Shenfeld A.A., Volkov K.V., Galkin A.P. 2018. Screening for amyloid proteins in the yeast proteome. Curr. Genet.64 (2), 469‒478.

    Article  CAS  PubMed  Google Scholar 

  40. Mouyna I., Hartland R.P., Fontaine T., Diaquin M., Simenel C., Delepierre M., Henrissat B., Latgé J.P. 1998. A 1,3-beta-glucanosyltransferase isolated from the cell wall of Aspergillus fumigatus is a homologue of the yeast Bgl2p. Microbiology.144 (Pt. 11), 3171‒3180.

    Article  CAS  Google Scholar 

  41. Mouyna I., Hartl L., Latgé J.P. 2013. β-1,3-Glucan modifying enzymes in Aspergillus fumigatus.Front. Microbiol.4, 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeng H.W., Holmes A.R., Cannon R.D. 2005. Characterization of two Candida albicans surface mannoprotein adhesins that bind immobilized saliva components. Med. Mycol.43 (3), 209‒217.

    Article  CAS  PubMed  Google Scholar 

  43. Sabirzyanov F.A., Sabirzyanova T.A., Rekstina V.V., Adzhubei A.A., Kalebina T.S. 2018. C-terminal sequence is involved in the incorporation of Bgl2p glucanosyltransglycosylase in the cell wall of Saccharomyces cerevisiae.FEMS Yeast Res.18 (1), fox093.

    Article  CAS  Google Scholar 

  44. Mrsa V., Ugarković T., Barbarić S. 1992. Binding of Saccharomyces cerevisiae extracellular proteins to glucane. Arch. Biochem. Biophys. 296 (2), 569‒574.

    Article  CAS  PubMed  Google Scholar 

  45. Rekstina V.V., Gorkovskii A.A., Bezsonov E.E., Kalebina T.S. 2016. Cell surface amyloid proteins of microorganisms: Structure, properties and significance in medicine. Vestn. RGMU.1, 4‒12.

    Google Scholar 

  46. Mann S.J., Blank F. 1975. Systemic amyloidosis in mice inoculated with lyophilized Candida cells.Infect. Immun.11 (6), 1371–1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pitarch A., Jiménez A., Nombela C., Gil C. 2006. Decoding serological response to Candida cell wall immunome into novel diagnostic, prognostic, and therapeutic candidates for systemic candidiasis by proteomic and bioinformatic analyses. Mol. Cell. Proteomics.5 (1), 79–96.

    Article  CAS  PubMed  Google Scholar 

  48. Henderson C.M., Block D.E. 2014. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae.Appl. Environ. Microbiol.80 (10), 2966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang H.X., Douglas L.M., Veselá P., Rachel R., Malinsky J., Konopka JB. 2016. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans.Mol. Biol. Cell. 27 (10), 1663‒1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas L.M., Konopka J.B. 2019. Plasma membrane architecture protects Candida albicans from killing by copper. PLoS Genet.15 (1), e1007911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Vaskovicova K., Stradalova V., Efenberk A., Opekarova M., Malinsky J. 2015. Assembly of fission yeast eisosomes in the plasma membrane of budding yeast: Import of foreign membrane microdomains. Eur. J. Cell Biol. 94 (1), 1‒11.

    Article  CAS  PubMed  Google Scholar 

  52. Jin C., Parshin A.V., Daly I., Strich R., Cooper K.F. 2013. The cell wall sensors Mtl1, Wsc1, and Mid2 are required for stress-induced nuclear to cytoplasmic translocation of cyclin C and programmed cell death in yeast. Oxid. Med. Cell. Longev. 2013, 320823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Rego A., Duarte A.M., Azevedo F., Sousa M.J., Côrte-Real M., Chaves S.R. 2014. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae.Microb. Cell. 1 (9), 303‒314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wallace-Salinas V., Brink D.P., Ahrén D., Gorwa-Grauslund M.F. 2015. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics. 16 (1), 514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Banavar S.P., Gomez C., Trogdon M., Petzold L.R., Yi T.M., Campàs O. 2018. Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis. PLoS Comput. Biol. 14 (1), e1005940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Borovikova D., Teparić R., Mrša V., Rapoport A. 2016. Anhydrobiosis in yeast: Cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration. Yeast.33 (8), 347‒353.

    Article  CAS  PubMed  Google Scholar 

  57. Jendretzki A., Wittland J., Wilk S., Straede A., Heinisch J.J. 2011. How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur. J. Cell Biol.90, 740–744.

    Article  CAS  PubMed  Google Scholar 

  58. Kock C., Dufrêne Y.F., Heinisch J.J. 2015. Up against the wall: Is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains? Appl. Environ. Microbiol.81 (3), 806‒811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kock C., Arlt H., Ungermann C., Heinisch J.J. 2016. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signaling. Cell. Microbiol. 18, 1251‒1267.

    Article  CAS  PubMed  Google Scholar 

  60. Heinisch J.J., Dupres V., Wilk S., Jendretzki A., Dufrêne Y.F. 2010. Single-molecule atomic force microscopy reveals clustering of the yeast plasma membrane sensor Wsc1. PLoS One.5, e11104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hutzler F., Gerstl R., Lommel M., Strahl S. 2008. Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol. Microbiol.68, 1438–1449.

    Article  CAS  PubMed  Google Scholar 

  62. Vay H.A., Philip B., Levin D.E. 2004. Mutational analysis of the cytoplasmic domain of the Wsc1 cell wall stress sensor. Microbiology.150, 3281–3288.

    Article  CAS  PubMed  Google Scholar 

  63. Petkova M.I., Pujol-Carrion N., de la Torre-Ruiz M.A. 2012. Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative condition sand TOR blockade. Fungal Genet. Biol.49, 903–914.

    Article  CAS  PubMed  Google Scholar 

  64. Straede A., Heinisch J.J. 2007. Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett.581, 4495–4500.

    Article  CAS  PubMed  Google Scholar 

  65. Utsugi T., Minemura M., Hirata A., Abe M., Watanabe D., Ohya Y. 2002. Movement of yeast 1,3-β-glucan synthase is essential for uniform cell wall synthesis. Genes Cells.7, 1‒9.

    Article  CAS  PubMed  Google Scholar 

  66. Goldman R.C., Sullivan P. A., Zakula D., Capobianco J.O. 1995. Kinetics of beta-1,3-glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. Eur. J. Biochem. 227 (1‒2), 372‒378.

    Article  CAS  PubMed  Google Scholar 

  67. Teparić R., Mrša V. 2013. Proteins involved in building, maintaining and remodeling of yeast cell walls. Curr. Genet.59 (4), 171‒185.

    Article  PubMed  CAS  Google Scholar 

  68. Popolo L., Ragni E., Carotti C., Palomares O., Aardema R., Back J.W., Dekker H.L., de Koning L.J., de Jong L., de Koster C.G. 2008. Disulfide bond structure and domain organization of yeast beta-(1,3)-glucanosyltransferases involved in cell wall biogenesis. J. Biol. Chem.283 (27), 18553‒18565.

    Article  CAS  PubMed  Google Scholar 

  69. Plotnikova T.A., Selyakh I.O., Kalebina T.S., Kulaev I.S. 2006. Bgl2p and Gas1p are the major glucantransferases forming the molecular ensemble of yeast cell wall. Dokl. Biochem. Biophys.409, 244–247.

    Article  CAS  PubMed  Google Scholar 

  70. Blanco N., Reidy M., Arroyo J., Cabib E. 2012. Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck. J. Cell Sci.125 (Pt. 23), 5781–5789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gohlke S., Heine D., Schmitz H.P., Merzendorfer H. 2018. Septin-associated protein kinase Gin4 affects localization and phosphorylation of Chs4, the regulatory subunit of the Baker’s yeast chitin synthase III complex. Fungal Genet. Biol. 117, 11-20.

    Article  CAS  PubMed  Google Scholar 

  72. Ram A.F., Wolters A. Ten Hoopen R., Klis F.M. 1994. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast.10, 1019‒1030.

    Article  CAS  PubMed  Google Scholar 

  73. Ram A.F.J., Kapteyn J.C., Montijn R.C., Caro L.H.P., Douwes J.E., Baginsky W., Mazur P., Van Den Ende H., Klis F.M. 1998. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in release of β-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J. Bacteriol.180, 1418‒1424.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sokolov S.S., Kalebina T.S., Agafonov M.O., Arbatskii N.P., Kulaev I.S. 2002. Comparative analysis of the structural role of proteins and polysaccharides in cell walls of the yeasts Hansenula polymorpha and Saccharomyces cerevisiae.Dokl. Biochem. Biophys. 384, 172–175.

    Article  CAS  PubMed  Google Scholar 

  75. Kalebina T.S., Farkas V., Laurinavichiute D.K., Gorlovoy P.M., Fominov G.V., Bartek P., Kulaev I.S. 2003. Deletion of BGL2 results in an increased chitin level in the cell wall of Saccharomyces cerevisiae.Antonie Van Leeuwenhoek.84 (3), 179‒184.

    Article  CAS  PubMed  Google Scholar 

  76. Vargas G., Rocha J.D., Oliveira D.L., Albuquerque P.C., Frases S., Santos S.S., Nosanchuk J.D., Gomes A.M., Medeiros L.C., Miranda K., Sobreira T.J., Nakayasu E.S., Arigi E.A., Casadevall A., Guimaraes A.J., et al. 2015. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans.Cell Microbiol.17, 389‒407.

    Article  CAS  PubMed  Google Scholar 

  77. Rodrigues M.L., Casadevall A. 2018. A two-way road: Novel roles for fungal extracellular vesicles. Mol. Microbiol.110 (1), 11‒15.

    Article  CAS  PubMed  Google Scholar 

  78. Pitarch A., Nombela C., Gil C. 2008. Collection of proteins secreted from yeast protoplasts in active cell wall regeneration. Methods Mol. Biol. 425, 241‒263.

    Article  CAS  PubMed  Google Scholar 

  79. Aoyagi H., Ishizaka M., Tanaka H. 2012. Secretory production of cell wall components by Saccharomyces cerevisiae protoplasts in static liquid culture. Biotechnol. Lett.34 (4), 695‒700.

    Article  CAS  PubMed  Google Scholar 

  80. Kalebina T.S., Sokolov S.S., Selyakh I.O., Vanichkina D.P., Severin F.F. 2015. Amiodarone induces cell wall channel formation in yeast Hansenula polymorpha.SpringerPlus.5, e11104.

    Google Scholar 

  81. Zvonarev A.N., Crowley D.E., Ryazanova L.P., Lichko L.P., Rusakova T.G., Kulakovskaya T.V., Dmitriev V.V. 2017. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates. FEMS Yeast Res.17 (3), fox026.

    Article  CAS  Google Scholar 

  82. Kulaev I.S., Vagabov V.M., Kulakovskaya T.V. (2005) Vysokomolekulyarnye neorganicheskie polifosfaty: bio-khimiya, kletochnaya biologiya, biotekhnologiya (High-Molecular Inorganic Polyphosphates: Biochemistry, Biology, Biotechnology). Moscow: Nauchnyi Mir.

  83. Kalebina T.S., Egorov S.N., Arbatskii N.P., Bezsonov E.E., Gorkovskii A.A., Kulaev I.S. 2008. The role of high-molecular-weight polyphosphates in activation of glucan transferase bgl2p from Saccharomyces cerevisiae cell wall. Dokl. Biochem. Biophys.420, 142–145.

    Article  CAS  PubMed  Google Scholar 

  84. Moreno-García J., Mauricio J.C., Moreno J., García-Martínez T. 2017. Differential proteome analysis of a flor yeast strain under biofilm formation. Int. J. Mol. Sci.18 (4), pii: E720.

    Article  PubMed  CAS  Google Scholar 

  85. Mani M., Chen C., Amblee V., Liu H., Mathur T., Zwicke G., Zabad S., Patel B., Thakkar J., Jeffery C.J. 2015. MoonProt: A database for proteins that are known to moonlight. Nucleic Acids Res.43 (Database issue), D277‒D282.

    Article  CAS  PubMed  Google Scholar 

  86. Jeffery C.J. 2018. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. Lond. B373 (1738), pii: 20160523.

    Article  CAS  Google Scholar 

  87. Urban C., Xiong X., Sohn K., Schroppel K., Brunner H., Rupp S. 2005. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans.Mol. Microbiol.57, 1318–1341.

    Article  CAS  PubMed  Google Scholar 

  88. Serrano-Fujarte I., López-Romero E., Cuéllar-Cruz M. 2016. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microb. Pathog. 90, 22‒33.

    Article  CAS  PubMed  Google Scholar 

  89. Koch M. R., Pillus L. 2009. The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc. Natl. Acad. Sci. U. S. A.106, 11224‒11229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ha C.W., Kim K., Chang Y.J., Kim B., Huh W.K. 2014. The β-1,3-glucanosyltransferase Gas1 regulates Sir2-mediated rDNA stability in Saccharomyces cerevisiae.Nucleic Acids Res.42 (13), 8486‒8499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eustice M., Pillus L. 2014. Unexpected function of the glucanosyltransferase Gas1 in the DNA damage response linked to histone H3 acetyltransferases in Saccharomyces cerevisiae.Genetics.196 (4), 1029‒1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the University of Rostock (Germany) for providing the basis for the microphotograph (Fig. 1) together with S.A. Kuznetcov and Visual Science Company for the graphic design of Fig. 2.

Funding

The work was supported by grant no. 18-34-00915mol_а from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Kalebina.

Ethics declarations

The authors state that there is no conflict of interests.

This article does not contain studies that use humans and animals as objects of research.

Additional information

Dedicated to the memory of our teacher Igor Stepanovich Kulaev

Translated by A. Levina

Abbreviations: Als, proteins that contain agglutinin-like sequences; ASL, alkali-soluble linkage proteins that are associated with the cell wall; GPI, glycosylphosphatidylinositol; MCC, membrane compartment of Can1; MCP, membrane compartment of Pma1; SEP, SDS/β-mercaptoethanol extractable proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalebina, T.S., Rekstina, V.V. Molecular Organization of Yeast Cell Envelope. Mol Biol 53, 850–861 (2019). https://doi.org/10.1134/S0026893319060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319060062

Keywords:

Navigation