Skip to main content
Log in

Homotopical Algebra for Lie Algebroids

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

We construct Quillen equivalent semi-model structures on the categories of dg-Lie algebroids and \(L_\infty \)-algebroids over a commutative dg-algebra in characteristic zero. This allows one to apply the usual methods of homotopical algebra to dg-Lie algebroids: for example, every Lie algebroid can be resolved by dg-Lie algebroids that arise from dg-Lie algebras, i.e. whose anchor map is zero. As an application, we show how Lie algebroid cohomology is represented by an object in the homotopy category of dg-Lie algebroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12(7), 1405–1429 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arias Abad, C., Crainic, M.: The Weil algebra and the Van Est isomorphism. Ann. Inst. Fourier (Grenoble) 61(3), 927–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Zvi, D., Nadler, D.: Loop spaces and connections. J. Topol. 5(2), 377–430 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, C., Moerdijk, I.: On the derived category of an algebra over an operad. Georgian Math. J. 16(1), 13–28 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Blumberg, A.J., Riehl, E.: Homotopical resolutions associated to deformable adjunctions. Algebr. Geom. Topol. 14(5), 3021–3048 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonavolontà, G., Poncin, N.: On the category of Lie \(n\)-algebroids. J. Geom. Phys. 73, 70–90 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bousfield, A.K., Gugenheim, V.K.A.M.: On PL de Rham theory and rational homotopy type. Mem. Am. Math. Soc. 8(179), ix+94 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Fresse, B.: Modules Over Operads and Functors. Lecture Notes in Mathematics, vol. 1967. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  9. Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry, Volume 221 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2017)

    Book  MATH  Google Scholar 

  10. Gillespie, J.: Kaplansky classes and derived categories. Math. Z. 257(4), 811–843 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. 67, 43–96 (1988)

    Article  MATH  Google Scholar 

  12. Hinich, V.: DG coalgebras as formal stacks. J. Pure Appl. Algebra 162(2–3), 209–250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinich, V., Schechtman, V.: Homotopy Lie algebras. In: Gel’fand, I.M. (ed.) Seminar, Volume 16 of Advances in Soviet Mathematics, pp. 1–28. American Mathematical Society, Providence (1993)

    Google Scholar 

  14. Huebschmann, J.: Multi derivation Maurer–Cartan algebras and sh Lie–Rinehart algebras. J. Algebra 472, 437–479 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kapranov, M.: Free Lie algebroids and the space of paths. Sel. Math. (N.S.) 13(2), 277–319 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kjeseth, L.: Homotopy Rinehart cohomology of homotopy Lie–Rinehart pairs. Homol. Homotopy Appl. 3(1), 139–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren der Mathematischen Wissenschaften, vol. 346. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  19. Lurie, J.: Derived Algebraic Geometry X: Formal Moduli Problems. http://www.math.harvard.edu/~lurie/ (2011)

  20. Lurie, J.: Higher Algebra. http://www.math.harvard.edu/~lurie/ (2016)

  21. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  22. Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Mathematical Society Lecture Note Series, vol. 124. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  23. Nuiten, J.: Koszul duality for Lie algebroids. arXiv:1712.03442 (2017)

  24. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pavlov, D., Scholbach, J.: Admissibility and rectification of colored symmetric operads. arXiv:1410.5675 (2014)

  26. Pridham, J.P.: Unifying derived deformation theories. Adv. Math. 224(3), 772–826 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pym, B., Safronov, P.: Shifted symplectic Lie algebroids. arXiv:1612.09446 (2016)

  28. Rinehart, G.S.: Differential forms on general commutative algebras. Trans. Am. Math. Soc. 108, 195–222 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  29. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Roytenberg, D. (ed.) Quantization, Poisson Brackets and Beyond (Manchester, 2001), Volume 315 of Contemporary Mathematics, pp. 169–185. American Mathematical Society, Providence (2002)

    Chapter  Google Scholar 

  30. Ševera, P.: Some title containing the words “homotopy” and “symplectic”, e.g. this one. In: Travaux mathématiques. Fasc. XVI, Volume 16 of Trav. Math., pp. 121–137. University of Luxembourg, Luxembourg (2005)

  31. Sheng, Y., Zhu, C.: Higher extensions of Lie algebroids. Commun. Contemp. Math. 19(3), 1650034, 41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spitzweck, M.: Operads, algebras and modules in general model categories. arXiv:math/0101102 (2001)

  33. Toën, B., Vezzosi, G.: Algèbres simpliciales \(S^1\)-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs. Compos. Math. 147(6), 1979–2000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. van der Laan, P.: Operads: Hopf algebras and coloured Koszul duality. Thesis, Utrecht University Depository (2004)

  35. Vezzosi, G.: A model structure on relative dg-Lie algebroids. In: Stacks and Categories in Geometry, Topology, and Algebra, Volume 643 of Contemporary Mathematics, pp. 111–118. American Mathematical Society, Providence (2015)

  36. Vitagliano, L.: On the strong homotopy Lie–Rinehart algebra of a foliation. Commun. Contemp. Math. 16(6), 1450007, 49 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee, whose many questions and comments have helped greatly improving the clarity and exposition of the paper. This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Nuiten.

Additional information

Communicated by Vladimir Hinich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuiten, J. Homotopical Algebra for Lie Algebroids. Appl Categor Struct 27, 493–534 (2019). https://doi.org/10.1007/s10485-019-09563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-019-09563-z

Keywords

Mathematics Subject Classification

Navigation