Skip to main content

Advertisement

Log in

An FPA and GA-based hybrid evolutionary algorithm for analyzing clusters

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Clustering is a technique employed for data mining and analysis. k-means is one of the algorithms utilized for clustering. However, the answer derived using this algorithm is dependent on the initial solution and hence easily retrieves the optimal local answers. To overcome the disadvantages of this algorithm, in this paper a combination of pollination of flowers algorithm and genetic algorithm, named FPAGA, is presented. Combination algorithms are used to diversify the search space of the solution and to improve its capability. To elaborate, crossover and discarding of pollens operator are utilized to increase the population diversity, while elitism operator is employed to improve the local search capabilities. Five datasets are selected to evaluate the performance of the proposed algorithm. The evaluation results demonstrate not only greater accuracy but also better stability compared to the FPA, GA, FA, DE, and k-means algorithms. Moreover, faster convergence is evident, according to the obtained statistical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Bala D, Vijay K (2015) Predictive analytics and data mining, pp 371–406

  2. Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Book  MATH  Google Scholar 

  3. Bansal A, Goel S, Sharma M (2017) Improved k-mean clustering algorithm for prediction analysis using classification technique in data mining. Int J Comput Appl 157(6):0975–8887

    Google Scholar 

  4. Bhanu B, Peng J (2000) Adaptive integrated image segmentation and object recognition. IEEE Trans Syst Man Cybern Part C Appl Rev 30(4):427–441

    Article  Google Scholar 

  5. Rao MR (1971) Cluster analysis and mathematical programming. J Am Stat Assoc 66(335):622–626

    Article  MATH  Google Scholar 

  6. Hsu YF, Lin CY, Lin WY, Tsai CF (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36(10):11994–12000

    Article  Google Scholar 

  7. Mani V, Omkar SN, Senthilnath J (2011) Clustering using firefly algorithm: performance study. Swarm Evolut Comput 1(3):164–171

    Article  Google Scholar 

  8. Amiri B, Olamaie J, Niknam T (2008) A hybrid evolutionary algorithm based on ACO and SA for cluster analysis. J Appl Sci 8(15):2695–2702

    Article  Google Scholar 

  9. Jayaraman VK, Kulkarni BD, Shelokar PS (2004) An ant colony approach for clustering. Anal Chim Acta 509(2):187–195

    Article  Google Scholar 

  10. Cheng K, Kao Y (2006) An ACO-based clustering algorithm. In: International workshop on ant colony optimization and swarm intelligence, Springer, Berlin, Heidelberg, pp 340–347

  11. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, Boston, pp 760–766

  12. Engelbrecht AP, Omran M, Salman A (2005) Particle swarm optimization method for image clustering. Int J Pattern Recognit Artif Intell 19(03):297–321

    Article  Google Scholar 

  13. Guo J, Sun Y, Tang H and Zhao M (2014) Data clustering using particle swarm optimization, In Future Information Technology (pp. 607-612), Springer, Berlin, Heidelberg

  14. Kao IW, Kao YT, Zahara E (2008) A hybridized approach to data clustering. Expert Syst Appl 34(3):1754–1762

    Article  Google Scholar 

  15. Behera HS, Naik B, Nayak J (2017) Cluster analysis using firefly-based k-means algorithm: a combined approach, in computational intelligence in data mining. Springer, Singapore, pp 55–64

    Google Scholar 

  16. Abdel-Baset M, Hezam IM (2015) An effective hybrid flower pollination and genetic algorithm for constrained optimization problems. Adv Eng Technol Appl Int J 4:27–27

    Google Scholar 

  17. Abdel-Baset M, Abdel-Raouf O (2014) A new hybrid flower pollination algorithm for solving constrained global optimization problems. Int J Appl Oper Res Open Access J 4(2):1–13

    Google Scholar 

  18. Jensi R, Jiji GW (2015) Hybrid data clustering approach using k-means and flower pollination algorithm, arXiv preprint arXiv:1505.03236

  19. Bensouyad M, Saidouni D (2015) A discrete flower pollination algorithm for graph coloring problem. In: 2015 IEEE 2nd international conference on cybernetics (CYBCONF), pp 151–155

  20. Wang R, Zhou Y (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(04):1659010

    Article  Google Scholar 

  21. Kaur D, Jyoti K (2013) Enhancement in the performance of K-means algorithm. Int J Comput Sci Commun Eng 2(1):29–32

    Google Scholar 

  22. Kiong SC, Meng OK, Pauline O (2017) An improved flower pollination algorithm with chaos theory for function optimization. In: AIP conference proceedings, vol 1870, no 1, p 050012, AIP Publishing

  23. Agrawal S, Deb K, Meyarivan T and Pratap A (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International conference on parallel problem solving from nature. Springer, Berlin, pp 849–858

  24. Basturk B, Karaboga D (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  25. Islam MZ, Rahman MA (2014) A hybrid clustering technique combining a novel genetic algorithm with K-means. Knowl Based Syst 71:345–365

    Article  Google Scholar 

  26. Asokan P, Karthikeyan S, Nickolas S and Page T (2015) A hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problems

  27. Li X, Yin M (2013) An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Adv Eng Softw 55:10–31

    Article  Google Scholar 

  28. Žalik KR (2008) An efficient k′-means clustering algorithm. Pattern Recognit Lett 29(9):1385–1391

    Article  Google Scholar 

  29. Blake CL, Merz CJ (1998) UCI repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine

    Google Scholar 

  30. Amiri B, Niknam T (2010) An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl Soft Comput 10(1):183–197

    Article  Google Scholar 

  31. Anderson E (1955) The species problem in Iris Annals of the Missouri Botanical. Gardens 23:457–509

    Google Scholar 

  32. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annual Eugenics 7:179–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fatahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatahi, M., Moradi, S. An FPA and GA-based hybrid evolutionary algorithm for analyzing clusters. Knowl Inf Syst 62, 1701–1722 (2020). https://doi.org/10.1007/s10115-019-01413-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-019-01413-7

Keywords

Navigation