Skip to main content
Log in

The traveling-wave tube in the history of telecommunication

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The traveling-wave tube is a critical subsystem for satellite data transmission. Its role in the history of wireless communications and in the space conquest is significant, but largely ignored, even though the device remains widely used nowadays. This paper presents, albeit non-exhaustively, circumstances and contexts that led to its invention, and its part in the worldwide (in particular in Europe) expansion of TV broadcasting via microwave radio relays and satellites. We also discuss its actual contribution to space applications and its conception. The originality of this paper comes from the wide period covered (from first slow-wave structures in 1889 to present space projects) and from connection points made between this device and commercial exploitations. The appendix deals with an intuitive pedagogical description of the wave–particle interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Radio History website, https://doi.org/www.americanradiohistory.com.

  2. Angel Y. and Riche P. 1952. “La liaison de télévision Paris-Lille”, Onde Élec., 32(301-302): 152–157.

    Google Scholar 

  3. Antoni M., Elskens Y. and Escande D. F. 1998. “Explicit reduction of N-body dynamics to self-consistent particle-wave interaction”, Phys. Plasmas, 5: 841–852.

    Article  ADS  MathSciNet  Google Scholar 

  4. Arnold H. D. and Espenschied L. 1923. “Transatlantic radio telephony”, Bell Labs Tech. J., 2(4): 116–144.

    Article  Google Scholar 

  5. Armstrong C. M. 2015. “The Quest for the Ultimate Vacuum Tube”, IEEE Spectrum, 52(12): 28–51.

    Article  Google Scholar 

  6. Atten M. 1996. Histoire, recherche télécommunications; Des recherches au CNET. 1940–1965 (Hors Série n°14, Réseaux, CNET).

  7. Baldwin L. G. 1968. S-band power amplifier - Improvement program Final report (NASA-CR-101964) ntrs: 19690031483.

  8. Barsotti T., Gastaud J., Pontic J. and Barentin M. 2018. “40W Q Wideband Space TWT”, accepted for the 19th IEEE International Vacuum Electronics Conference 2018 Monterey.

  9. Barton M. A. 1946. “Traveling Wave Tubes”, Radio, 30(8): 11–13, 30–32.

    Google Scholar 

  10. Bénisti D. 2016. “Envelope equation for the linear and nonlinear propagation of an electron plasma wave, including the effects of Landau damping, trapping, plasma inhomogeneity, and the change in the state of wave”, Phys. Plasmas, 23(10): 102105.

    Article  ADS  Google Scholar 

  11. Bernier J. 1947a. “Essai de théorie du tube électronique à propagation d’ondes”, Ann. Radioélec., 2(7): 87–101.

    Google Scholar 

  12. Bernier J. 1947b. “Essai de théorie du tube électronique à propagation d’ondes”, Onde Élec., 27(243): 231–243.

    Google Scholar 

  13. Blanc-Lapierre A. and Lapostolle P. 1946. “Contribution à l’étude des amplificateurs à ondes progressives”, Ann. Télécommun., 1(12): 283–302.

    Google Scholar 

  14. Blanc-Lapierre A., Lapostolle P., Voge J. P. and Wallanschek R. 1947. “Sur la théorie des amplificateurs à ondes progressives”, Onde Élec., 27(242): 194–202.

    Google Scholar 

  15. Blanchard J. 1938. “Hertz, the discoverer of electric waves” Proc. IRE, 26(5): 505–515.

    Article  Google Scholar 

  16. Bodmer M. G., Laico J. P., Olsen E. G. and Ross A. T. 1963. “The satellite traveling-wave tube”, Bell Labs Tech. J., 42(4): 1703–1748.

    Article  Google Scholar 

  17. Bonifacio R., Casagrande F. and Pellegrini C. 1987. “Hamiltonian model of a free electron laser”, Opt. Commun., 61(1): 55–60.

    Article  ADS  Google Scholar 

  18. Bonifacio R., Casagrande F., Ferrario M., Pierini P. and Piovella N. 1988. “Hamiltonian model and scaling laws for free-electron-laser amplifiers with tapered wiggler”, Opt. Commun., 66(2-3): 133–139.

    Article  ADS  Google Scholar 

  19. Bonifacio R., Casagrande F., Cerchioni G., De Salvo Souza L. and Pierini P. Piovella N. 1990. “Physics of the high-gain FEL and superradiance”, Riv. Nuovo Cim., 13(9): 1–69.

    Article  ADS  Google Scholar 

  20. Booker H. G. and Gordon W. E. 1950. “A Theory of Radio Scattering in the Troposphere” Proc. IRE, 38(4): 401–412.

    Article  Google Scholar 

  21. Bray J. 1995. The Communications Miracle (Springer, New York).

  22. Bretting J. and Klein W. 1969. “Traveling-wave tube for the communication satellite Symphonie”, J. Spacecr. Rockets, 6(3): 285–288.

    Article  ADS  Google Scholar 

  23. Butrica A. J. (Editor) 1997. Beyond the Ionosphere: Fifty Years of Satellite Communication (The NASA History Series, SP-4217) ntrs: 19970026049.

  24. Cabessa R. 1952. “L’apport des liaisons par faisceaux hertziens dans le domaine des télécommunications”, Onde Élec., 32(301-302): 131–151.

    Google Scholar 

  25. Chodorow M. and Wessel-Berg T. 1961 “A high-efficiency klystron with distributed interaction”, IRE Trans. Electron Devices, 8(1): 44–55.

    Article  ADS  Google Scholar 

  26. CIA November 18, 1953. Soviet Research on Traveling Wave Tube (CIA report) foia: CIA-RDP80-00809A000700150068-9.

  27. Clarke A. C. 1945a. “Peacetime uses for V2: V2 for Ionosphere Research?”, Wireless World, 51(2): 58.

    Google Scholar 

  28. Clarke A. C. 1945b. “The Space-Station: Its Radio Applications”, report to the members of the British Interplanetary Society.

  29. Clarke A. C. 1945c. “Extra-Terrestrial Relays: Can Rocket Stations Give World-Wide Radio Coverage?”, Wireless World, 51(10): 305–308.

    Google Scholar 

  30. Clarke A. C. 1952. The Exploration of Space (Harper & Row, New York).

  31. Clarke A. C. 1968. 2001: a Space Odyssey (Hutchinson, London).

  32. Clarke A. C. 1973. Profiles of the Future (Harper & Row, New York) revised edition.

  33. Clavier A. G. and Rostas E. 1941. Electron tube and circuits employing it, U.S. Patent 2, 232, 050, filed May 27, 1938, issued February 18, 1941.

  34. Clavier A. G. and Rostas E. 1942. Electron tube and circuits employing it, U.S. Patent 2, 232, 756, filed June 09, 1939, issued July 14, 1942.

  35. Clayton R. J., Espley D. C., Griffith G. W. S. and Pinkham J. M. C. 1951. “The London-Birmingham television radio-relay link”, J. Inst. Electr. Eng., 1951(7): 222–226.

    Google Scholar 

  36. Coaker B. and Challis T. 2008. “Travelling Wave Tubes: Modern Devices and Contemporary Applications”, Microwave J., 0(10): 32–46.

    Google Scholar 

  37. Coe D. 1961. Marconi; Pioneer of Radio (Julian Messner, Inc., New York).

  38. Collier R. J., Helm G. D., Laico J. P. and Striny K. M. 1963. “The ground station high-power traveling-wave tube”, Bell Labs Tech. J., 42(4): 1829–1861.

    Article  Google Scholar 

  39. Copeland J. and Haeff A. A. 2015a. “Andrew V. Haeff: Enigma of the Tube Era and Forgotten Computing Pioneer”, IEEE Ann. Hist. Comput., 37: 67–74.

    Article  Google Scholar 

  40. Copeland J. and Haeff A. A. 2015b. “The True History of the Traveling Wave Tube”, IEEE Spectrum, 52(9): 38–43.

    Article  Google Scholar 

  41. Copeland J., Haeff A. A., Gough P. and Wright C. 2017. “Screen History: The Haeff Memory and Graphics Tube”, IEEE Ann. Hist. Comput., 39: 9–28.

    Article  Google Scholar 

  42. Corliss W. R. 1972. The interplanetary Pioneers. Volume 2: System design and development (NASA-SP-279-VOL-2) ntrs: 19730009155.

  43. Crawford A. B., Cutler C. C., Kompfner R. and Tillotson T. C. 1963. “The research background of the Telstar experiment”, Bell Labs Tech. J., 42(4): 747–751.

    Article  Google Scholar 

  44. Crawley C. 1928. “Visible speech across the Atlantic”, Television, 1(3): 20–21.

    Google Scholar 

  45. Cuccia C. L. 1981. Television broadcast from space systems: Technology, costs (NASA-CR-169247), ntrs: 19820022555.

  46. Cutler C. C. 1948. “Experimental Determination of Helical-Wave Properties”, Proc. IRE, 36: 230–233.

    Article  Google Scholar 

  47. Cutler C. C. 1956. “The Nature of Power Saturation in Traveling Wave Tubes”, Bell Labs Tech. J., 35(4): 841–876.

    Article  Google Scholar 

  48. Davies M. E. and Harris W. R. 1988. RAND’s Role in the Evolution of Balloon and Satellite Observation Systems and Related U.S. Space Technology (Defense Technical Information Center), dtic: ADA216963.

  49. Dawson G., Hall L. L., Hodgson K. G., Meers R. A. and Merriman J. H. H. 1954. “The Manchester-Kirk o’Shotts television radio-relay system”, Proc. IEE - Part I: General, 101(169): 93–109.

    Google Scholar 

  50. U.S. Department of Defense. 1997. Industrial Assessment of the Microwave Power Tube Industry (Industrial Capabilities and Assessments, Pentagon, Washington, DC) dtic: ADA323772.

  51. Dimonte G. 1977. Destruction of trapped particle oscillations, Ph.D. thesis (Univ. California at San Diego, La Jolla, California).

  52. Dinsdale A. 1926a. “Television – An accomplished fact”, Radio News, 8(3): 206–207, 280–283.

    Google Scholar 

  53. Dinsdale A. 1926b. “And now, we see by radio!”, Radio Broadcast, 10(2): 139–143.

    Google Scholar 

  54. Doveil F., Escande D. F. and Macor A. 2005. “Experimental observation of nonlinear synchronization due to a single wave”, Phys. Rev. Lett., 94: 085003.

    Article  ADS  Google Scholar 

  55. Doveil F., Macor A. and Aïssi A. 2007. “Observation of Hamiltonian chaos and its control in wave particle interaction”, Plasma Phys. Control. Fusion, 49: 125–135.

    Article  ADS  MATH  Google Scholar 

  56. Dunlap O. E., Jr. 1944. Radio’s 100 Men of Science (Harper & Brothers, New York).

  57. Dürr W., Dürr C., Ehret P. and Bosch E. 2015. “Thales 150 W C-Band radiation cooled Travelling Wave Tube”, 15th IEEE International Vacuum Electronics Conference 2015 Beijing, https://doi.org/10.1109/IVEC.2015.7223814.

  58. Durkee A. L. 1947. “A Microwave relay system between New York and Boston”, Bell Labs Record, 25(12): 207–210.

    Google Scholar 

  59. Eiffel G. 1900. Travaux scientifiques exécutés à la tour de 300 mètres: De 1889 à 1900 (L. Maretheux, Paris).

  60. Elskens Y. and Escande D. F. 2003. Microscopic Dynamics of Plasmas and Chaos (IoP Publishing, Bristol).

  61. Elskens Y., Escande D. F. and Doveil F. 2014. “Vlasov equation and N-body dynamics - How central is particle dynamics to our understanding of plasmas?”, Eur. Phys. J. D, 68: 218.

    Article  ADS  Google Scholar 

  62. ESA website, https://doi.org/www.esa.int.

  63. Escande D. F. 2010. “Wave-particle interaction in plasmas : A qualitative approach”, in Dauxois T., Ruffo S. and Cugliandolo L. F. (Editors), Long-Range Interacting Systems (Oxford University Press, Oxford), pp. 469–506.

  64. Escande D. F. 2018. “From thermonuclear fusion to Hamiltonian chaos”, Eur. Phys. J. H 43, 397–420.

    Article  Google Scholar 

  65. Faillon G., Kornfeld G., Bosch E. and Thumm M. K. 2008. “Microwave Tubes”, in Eichmeier J. A. and Thumm M. K. (Editors) Vacuum Electronics (Springer, Berlin), pp. 1–82.

  66. Faulkner H. 1952. “Permanent point-to-point links for relaying television”, Proc. IEE - Part IIIA: Television, 99(18): 313–322.

    Google Scholar 

  67. Feldman N. E. 1965. “Communication Satellite Output Devices, Part 2”, Microwave J., 87–97.

  68. Ferrié G. A. 1911. “Sur quelques nouvelles applications de la télégraphie sans fil”, J. Phys. Théor. Appl., 1: 178–189.

    Article  Google Scholar 

  69. Field L. M. 1951. High-frequency amplifying device , U.S. Patent 2, 575, 383, filed October 22, 1946, issued November 20, 1951.

    Google Scholar 

  70. Filep R. T., Schnapf A. and Fordyce S. W. 1983. Study to forecast and determine characteristics of world satellite communications market (NASA-CR-168270) ntrs: 19840008358.

  71. Firpo M.-C., Doveil F., Elskens Y., Bertrand P., Poleni M. and Guyomarc’h D. 2001. “Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model”, Phys. Rev. E, 64: 026407.

    Article  ADS  Google Scholar 

  72. Fleming J. A. 1905. Instrument for converting alternating electric currentsinto continuous currents, U.S. Patent 803, 684, filed April 19, 1905, issued November 7, 1905.

  73. Flint P. B. 1977. “Dr. Rudolf Kompfner Dies at 68; Developer of UHF Amplification”, The New York Times.

  74. de Forest L. 1908. Space telegraphy, U.S. Patent 879, 532, filed January 29, 1907, issued February 18, 1908.

  75. Forestier P. 1951. “Le nouveau faisceau hertzien P.T.T. Paris-Lille, à ondes centimétriques” TSF pour tous, 276: 314–316.

    Google Scholar 

  76. Gastaud J., Gérard E., Laurent A. and Stalzer H. 2014. “170W Ka-Band space TWT”, 14th IEEE International Vacuum Electronics Conference 2014 Monterey, https://doi.org/10.1109/IVEC.2014.6857480.

  77. Gavaghan H. 1998. Something New Under the Sun Satellites and the Beginning of the Space Age (Springer, New York).

  78. Gernsback H. 1927. “Can We Radio the Planets?”, Radio News, 8(8): 946–947, 1045.

    Google Scholar 

  79. Gernsback H. (Editor) 1936. “Giant television camera used at olympics”, Short Wave Craft, 392, 424.

    Google Scholar 

  80. Gertner J. 2012. The Idea Factory: Bell Labs and the Great Age of American Innovation (Penguin, London).

  81. Gilmour A. S., Jr. 1994. Principles of Traveling Wave Tubes (Artech House Radar Library, Boston).

  82. Gilmour A. S., Jr. 2011. Klystrons, Traveling Wave Tubes, Magnetrons, Cross-Field Amplifiers, and Gyrotrons (Artech House Radar Library, Boston).

  83. Goldsmith A. N., Van Dyck A. F., Burnap R. S., Dickey E. T. and Baker G. M. K. (Editors) 1946. Television, Volume III 1938–1941 (RCA Laboratories Division, Princeton, New Jersey).

  84. Gootée T. 1946. “Radar reaches the Moon”, Radio News, 35(4): 25–27.

    Google Scholar 

  85. Grant T. 1996. International Directory of Company Histories, Volume 15 (St. James Press, MI).

  86. Grieg D. D., Metzger S. and Waer R. 1948. “Considerations of Moon-Relay Communication”, Proc. IRE, 36(5): 652–663.

    Article  Google Scholar 

  87. Guénard P., Doehler O., Epsztein B. and Warnecke R. 1952. “Nouveaux tubes oscillateurs à large bande d’accord”, Comptes Rendus Acad. Sci., 235: 236–238.

    Google Scholar 

  88. Gutton H., Fagot J. and Hugon J. 1952. “les équipements du faisceau hertzien Paris-Lille”, Onde Élec., 32(301-302): 174–180.

    Google Scholar 

  89. Guyomarc’h D. 1996. Un tube à onde progressive pour l’étude de la turbulence plasma, Thèse de Doctorat (Univ. Provence, Aix-Marseille I).

  90. Haeff A. V. 1936. Device for and method of controlling high frequency currents, U.S. Patent 2, 064, 469, filed October 23, 1933, issued December 15, 1936.

  91. Haeff A. V. 1939. “An Ultra-High-Frequency Power Amplifier of Novel Design”, Electronics, 12(2): 30–32.

    Google Scholar 

  92. Haeff A. V. 1941a. Device for and method of controlling high frequency currents, U.S. Patent 2, 233, 126, priority date October 23, 1933, filed May 14, 1936, issued February 25, 1941.

  93. Haeff A. V. 1941b. Electron discharge device, U.S. Patent 2, 237, 878, filed February 2, 1939, issued April 8, 1941.

  94. Halsey R. J. and Williams H. 1952. “The Birmingham-Manchester-Holme Moss television-cable system”, Proc. IEE - Part IIIA: Television, 99(18): 398–410.

    Google Scholar 

  95. Haynes F. H. 1929. “Television reception tests”, Wireless World, 225: 669–673.

    Google Scholar 

  96. Heaviside O. 1902. Encyclopedia Britannica, 10 th edition, Vol. 33, p. 215.

    Google Scholar 

  97. Hertz H. R. 1888. “Ueber die Ausbreitungsgeschwindigkeit der electrodynamischen Wirkungen”, Wied. Ann., 34: 551–569.

    Article  MATH  Google Scholar 

  98. Hertz H. R. 1889. “Die Kräfte electrischer Schwingungen, behandelt nach derMaxwell’schen Theorie”, Wied. Ann., 36: 1–22.

    Article  Google Scholar 

  99. Hertz H. R., English translation by Jones D. E. 1893. Electrical Waves (Dover Publication Inc., New York).

  100. Highstrete B. A. and Grabowski K. P. 1962. 1962 International Electron Devices Meeting, https://doi.org/10.1109/IEDM.1962.187332.

  101. Hulburt E. O. 1929. “Ionization in the Atmosphere of Mars”, Proc. IRE, 19(9): 1523–1527.

    Article  Google Scholar 

  102. Hughes heritage website, https://doi.org/www.hughesscgheritage.com.

  103. IEEE 2003. 521-2002 - IEEE Standard Letter Designations for Radar-Frequency Bands, https://doi.org/10.1109/IEEESTD.2003.94224.

  104. Jarrett J. H. 1964. “Traveling Wave Tubes”, Electronics World, 71(3): 25–28.

    Google Scholar 

  105. Jenkins C. F. 1925. Transmitting pictures by wireless, U.S. Patent 1, 544, 156, filed March 13, 1922, issued June 30, 1925.

  106. Jonas G. 2008. “Arthur C. Clarke, Author Who Saw Science Fiction Become Real, Dies at 90”, The New York Times.

  107. Josifovska S. (Editor) 2013. “Centenary Issue”, Electronics World, 119: 14–19.

    Google Scholar 

  108. Keith L. J. and Brogue A. (Editors) 1950. Father of Radio; the Autobiography of Lee de Forest (Wilcox & Follett Co., Chicago).

  109. Kempkes M. A., Hawkey T. J., Gaudreau M. P. J. and Phillips R. A. 2006. “W-Band Transmitter Upgrade for the Haystack UltraWideband Satellite Imaging Radar (HUSIR)”, IEEE International Vacuum Electronics Conference 2006, Monterey, https://doi.org/10.1109/IVELEC.2006.1666427.

  110. Kennedy T. R., Jr. 1946. “New tube expands radio possibilities”, The New York Times.

  111. Kennelly A. E. 1902. “On the elevation of the Electrically-Conducting Strata of the Earth’s Atmosphere”, Electrical World Engineer, 39(11): 473.

    Google Scholar 

  112. Kinzer J. P. and Laidig J. F. 1956. “Engineering aspects of the TH microwave radio relay system”, Bell Labs Tech. J., 40(6): 1459–1494.

    Google Scholar 

  113. Kohlhaas H. T. 1931. “7 Inch Waves Span 21 Miles”, Short Wave Craft, 2(1): 10–11, 65–66.

    Google Scholar 

  114. Kompfner R. 1946. “The Traveling Wave Valve”, Wireless World, 52(11): 369–372.

    Google Scholar 

  115. Kompfner R. 1947a. “The traveling wave tube as an amplifier at microwaves”, Proc. IRE, 35(2): 124–127.

    Article  Google Scholar 

  116. Kompfner R. 1947b. “The Travelling-Wave Tube, Centimetre-Wave Amplifier”, Wireless Engineer, 53(9): 255–266.

    Google Scholar 

  117. Kompfner R. 1952. “Travelling-wave tubes”, Rep. Prog. Phys., 15: 275–327.

    Article  ADS  MATH  Google Scholar 

  118. Kompfner R. 1964. The Invention of Traveling Wave Tubes (San Francisco Press, San Francisco).

  119. Kompfner R. 1976. “The invention of traveling wave tubes”, IEEE Trans. Elec. Devices, 23: 730–738.

    Article  ADS  Google Scholar 

  120. Kornfeld G. and Bosch E. 2001. “From History to Future of Satellite TWT Amplifiers”, Frequenz, 55: 258–262.

    Article  ADS  Google Scholar 

  121. Kosmahl H. 1982. Space tubes: A major challenge (1982 International Electron Devices Meeting IEEE) ntrs: 19830003177.

  122. Kosmahl H. 1983. “Space power tubes – very much alive” (Cleveland Electronic Conference (CECON ’83) IEEE) ntrs: 19830020024.

  123. Lindenblad N. E. 1939. “Television transmitting antenna for Empire State Building”. RCA Rev., 111(4): 387–408.

    Google Scholar 

  124. Lindenblad N. E. 1942. Electron discharge device system, U.S. Patent 2, 300, 052, filed May 4, 1940, issued October 27, 1942.

  125. Lindenblad N. E. 1951. High-frequency electron discharge device of the traveling wave type, U.S. Patent 2, 578, 434, filed June 25, 1947, issued December 11, 1951.

  126. Lindenblad N. E. 1954. High-frequency electron discharge device, U.S. Patent 2, 679, 019, filed December 2, 1947, issued May 18, 1954.

  127. Llewellyn F. B. 1937. Space discharge apparatus, U.S. Patent 2, 096, 460, filed January 23, 1936, issued October 19, 1937.

  128. Llewellyn F. B. 1945. Electron discharge device, U.S. Patent 2, 367, 295, filed May 17, 1940, issued January 16, 1945.

  129. Logsdon J. M. (Editor) 1995 to 2008. Exploring the Unknown, VolumesI to VII (The NASA History Series).

  130. Loshakov L. N. 1949. “On the propagation of waves along a coaxial spiral line in the presence of an electron beam”, Zh. Tech. Fiz., 19: 578–595.

    MathSciNet  Google Scholar 

  131. Lowell P. 1896. Mars (Houghton, Mifflin and Co, Boston).

  132. Lowell P. 1906. Mars and Its Canals (The Macmillan Company, New York).

  133. MacDonald M. E., Anderson J. P., Lee R. K., Gordon D. A. and McGrew G. N. 2014. “The HUSIR W-Band Transmitter”, Lincoln Laboratory J., 21(1): 106–114.

    Google Scholar 

  134. Martin A. V. J. 1952. “International TV is here”, Radio News, 48(6): 31–33, 118–119.

    Google Scholar 

  135. Marzin P. 1951. “Les câbles hertziens”, Ann. Télécommun., 6(12): 363–380.

    Google Scholar 

  136. Maxwell J. C. 1865. “A Dynamical Theory of the Electromagnetic Field”, Philos. Trans. Royal Soc., 155: 459–512.

    Article  ADS  Google Scholar 

  137. McDowell H. L. 1960. “The Traveling-Wave Tube Goes to Work”, Bell Labs Record, 38(6): 207–210.

    Google Scholar 

  138. McKenzie A. A. (Editor) 1946. “New Products: Traveling Wave Tube”, Electronics, 29: 206.

    Google Scholar 

  139. Mehrholz D., Leushacke L., Flury W., Jehn R., Klinkrad H. and Landgraf M. 2002. “Detecting, Tracking and Imaging Space Debris”, ESA Bull., 109: 128–134.

    ADS  Google Scholar 

  140. Mendel J. T. 1973. “Helix and coupled-cavity traveling-wave tubes”, Proc. IEEE, 61(3): 280–298.

    Article  Google Scholar 

  141. Minenna D. F. G. 2016. Description hamiltonienne de l’interaction ondes-électrons dans un guide d’onde périodique, M. Sc. thesis (Aix-Marseille Univ., Marseille).

  142. Minenna D. F. G., Elskens Y. and André F. 2017. “Electron-wave momentum exchange and time domain simulations applied to travelingwave tubes”, 18 th IEEE International Vacuum Electronics Conference 2017 London, https://doi.org/10.1109/IVEC.2017.8289689.

  143. Minenna D. F. G., Elskens Y., André F. and Doveil F. 2018. “Electromagnetic power and momentum in N-body Hamiltonian approach to wave-particle dynamics in a periodic structure”, Europhys. Lett., 122: 44002.

    Article  ADS  Google Scholar 

  144. Miquel P. 1973. Histoire de la radio et de la télévision (Édition Richelieu, Paris).

  145. Mofenson J. 1946. “Radar echoes from the Moon”, Electronics, 19(4): 92–98.

    Google Scholar 

  146. Morton J. A. 1949. “A microwave triode for radio relay”, Bell Labs Record, 27(5): 166–170.

    Google Scholar 

  147. NASA 1963a. Telstar I, Volume 3 (NASA Technical Report SP-32), ntrs: 19640001170.

  148. NASA 1963b. Advanced Syncom, Volume 1 (NASA-CR-74485), ntrs: 19660014301.

  149. NASA 1963c. Advanced Syncom, Volume 4 (NASA-CR-74580), ntrs: 19660015211.

  150. NASA 1965. Relay I Program, Final Report (NASA-SP-76), ntrs: 19660000937.

  151. NASA 1977. Two Voyagers Set for Launch (NASA-NEWS-RELEASE-77-136, P77-10165), ntrs: 19770079866.

  152. NASA website, https://doi.org/www.nasa.gov/.

  153. Nomura T., Suzuki N., Mita S. and Sawazaki N. 1954. “Microwave Relay for Japanese Television”, Electronics, 27(6): 152–156.

    Google Scholar 

  154. Nyman A. 1931. “Europe rise to television; Zeiss is a hit”, Radio World, 20(12): 21.

    Google Scholar 

  155. Obituary. February 20, 1978. “Nils E. Lindenblad, at 82, a pioneer in radio and TV”, The New York Times.

  156. Obituary. July 25, 1990. “Kenjiro Takayanagi, Electrical Engineer, 91”, TheNew York Times.

  157. Obituary. February 14, 2014. “John Thomas Mendel”, Los Angeles Times.

  158. Ogata M., Mizusawa H. and Irie K. 1985. Discussion on the progress and future of satellite communication (Japan) (NASA-TM-77672), ntrs: 19860000911.

  159. Pchelnikov Y. N. 2003. “Old Know-How in Helix TWT Development in the USSR”, High Energy Density and High Power RF: 6th Workshop (American Institute of Physics).

  160. Pellegrini C. 2012. “The history of X-ray free-electron lasers”, Eur. Phys. J. H 37: 659–708.

    Article  Google Scholar 

  161. Percival W. S. 1937. Improvements in and relating to thermionic valve circuits, British Patent Specification No. 460 562, filed July 24, 1935, accepted January 25, 1937.

  162. Philips Natuurkundig Laboratorium history website, https://doi.org/extra.research.philips.com.

  163. Pierce J. R. 1946. “The beam traveling-wave tube”, Bell Labs Record, 24(12): 439–442.

    Google Scholar 

  164. Pierce J. R. and Field L. M. 1947. “Traveling-wave tubes”, Proc. IRE, 35(2): 108–111.

    Article  Google Scholar 

  165. Pierce J. R. 1947. “Theory of the beam-type as amplifier at microwaves”, Proc. IRE, 35(2): 111–124.

    Article  Google Scholar 

  166. Pierce J. R. 1950. Traveling Wave Tubes (Van Nostrand, New York).

  167. Pierce J. R. 1952. Traveling Wave Tube, U.S. Patent 2, 602, 148, filed October 22, 1946, issued July 1, 1952.

  168. Pierce J. R., under the pseudonym J. J. Coupling. 1952. “Don’t Write: Telegraph!”, Astounding Sci. Fiction, 49: 82–96.

    Google Scholar 

  169. Pierce J. R. 1955. “Orbital Radio Relays”, Jet Propulsion, 25(4): 153–157.

    Article  Google Scholar 

  170. Pierce J. R. 1959. “Exotic Radio Communications”, Bell Labs Records, 37(9): 323–329.

    Google Scholar 

  171. Pierce J. R. and Kompfner R. 1959. “Transoceanic Communication by Means of Satellites”, Proc. IRE, 47(3): 372–380.

    Article  Google Scholar 

  172. Pierce J. R. 1962. “History of the Microwave-Tube Art”, Proc. IRE, 50(5): 978–984.

    Article  Google Scholar 

  173. Pierce J. R. 1968. The Beginnings of Satellite Communications (San Francisco Press, San Francisco).

  174. Pocklington H. C. 1897. “Electrical oscillations in wires”, Proc. Camb. Philos. Soc., 9: 324.

    MATH  Google Scholar 

  175. Pocock H. S. (Editor) 1933. “The Iconoscope – America’s Latest Television Favourite”, Wireless World, 33(9): 197.

    Google Scholar 

  176. Posthumus K. 1935. “Oscillations in split anode magnetron”, Wireless Engineer, 12(138): 126–132.

    Google Scholar 

  177. Potter R. K. 1938. Wave amplifier, U.S. Patent 2, 122, 538, filed January 22, 1935, issued July 5, 1938.

  178. Project RAND. May 1946. Preliminary Design of an Experimental World-Circling Spaceship (Report No. SM-11827, Douglas Aircraft Company Inc., Santa Monica, CA).

  179. Rayleigh (Lord) 1897. “On the passage of electric waves through tubes, or the vibrations of dielectric cylinders”, Philos. Mag., 43(261): 125–132.

    Article  MATH  Google Scholar 

  180. Roberts L. A. 1967. The efficiency improvement program for the WJ-274 traveling wave tube (NASA-CR-66522), ntrs: 19680004733.

  181. Roberts W. V. B. 1939. Electron discharge device circuit, U.S. Patent 2, 168, 782, filed October 7, 1935, issued August 8, 1939.

  182. Rockett F. (Editor) 1946. “Wideband Microwave Amplifier Tube”, Electronics, 29: 90–92.

    Google Scholar 

  183. Roetken A. A., Smith K. D. and Friis R. W. 1951. “The TD-2 microwave radio relay system” Bell Labs Tech. J., 30(4): 1041–1077.

    Article  Google Scholar 

  184. Rogers D. C. 1949. “Travelling-Wave Amplifier for 6 to 8 Centimetres”, Electrical Commun., 26(2): 144–152.

    Google Scholar 

  185. Rogers D. C. 1953. “The Travelling-Wave Tube as Output Amplifier in Centimetre-Wave Radio Links”, Proc. IEE-Part III: Radio Commun. Eng., 100(65): 151–156.

    Google Scholar 

  186. Rosenberg H. R. (Editor) 1972. Apollo experience report: S-band system signal design and analysis (NASA-TN-D-6723), ntrs: 19720012253.

  187. Roubine E. 1947 “Sur le circuit à hélice utilisé dans le tube à ondes progressives”, Onde Élec., 27(242): 203–205.

    Google Scholar 

  188. Rowe J. E. 1965. Nonlinear Electron-Wave Interaction Phenomena (Academic Press Inc., New York).

  189. Sauseng O. G., Basiulis A. and Tammaru I. 1968. Analytical study program to develop the theoretical design of traveling-wave tubes Final report (NASA-CR-72450), ntrs: 19690009543.

  190. Sawazaki N. and Honma T. 1956. “New Microwave Repeater System Using Traveling-Wave Tubes”, Proc. IRE, 44(1): 19–24.

    Article  Google Scholar 

  191. Saxon W. 2002. “John Robinson Pierce, 92, A Father of the Transistor”, The New York Times.

  192. Schafer J. P. and Brandt R. H. 1961. Project Echo - 960-megacycle, 10-kilowatt transmitter (NASA-TN-D-1129), ntrs: 19980227850.

  193. Schmid P. E. 1967. The feasibility of a direct relay of Apollo spacecraft data via a communication satellite (NASA-TN-D-4048), ntrs: 19670025652.

  194. Schwartz M. and Hayes J. 2008. “A history of transatlantic cables”, IEEE Commun. Mag., 49(9): 42–48.

    Article  Google Scholar 

  195. Sengupta D. L. and Sarkar T. K. 2003. “Maxwell, Hertz, the Maxwellians, and the early history of electromagnetic waves”, IEEE Antennas Propag. Mag., 45(2): 13–19.

    Article  ADS  Google Scholar 

  196. Shulman C. and Heagy M. S. 1947. “Small-signal analysis of traveling-wave tube”, R.C.A. Rev., 8(4): 585–611.

    Google Scholar 

  197. Siddiqi A. A. 2002. Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes 1958-2000 (NASA/SP-2002-4524) ntrs: 20020052429.

  198. Siegmeth A. J., Purdue R. E. and Ryan R. E. 1973. Tracking and datasystem support for the Pioneer project. Volume 1: Pioneer 10-prelaunch planning through second trajectory correction, 4 December 1969 - 1 April 1972 (NASA-CR-131373) ntrs: 19730011461.

  199. Smith H. F. (Editor) 1953. “International Televition: Radio and Cable 2, 000-mile Network for the Coronation Transmissions”, Wireless World, 59(6): 274–275.

    Google Scholar 

  200. Standard Telephones and Cables. 1939. Ultra-high Frequency Electron Discharge Systems for Dielectric Guide Transmission Systems , British Patents 508, 354, filed November 4, 1938, issued June 29, 1939.

    Google Scholar 

  201. Standard Telephones and Cables. 1941. Circuit Employing Discharge Valves, British Patents 533, 613, filed October 27, 1939, issued February 17, 1941.

  202. Thales internal references, private communication.

  203. Thayer G. N., Roetken A. A., Friis R. W. and Durkee A. L. 1947. “A Broad-Band Microwave Relay System between New York and Boston”, Proc. IRE, 37(2): 183–188.

    Google Scholar 

  204. Thomson J. J. 1893. Recent Researches in Electricity and Magnetism (Clarendon Press, Oxford).

  205. Titchmarsh A. 2013. Elizabeth: Her Life, Our Times (Ebury Publishing, London).

  206. Tolstoy A., English translation by Fetzer L. 1985. Aelita, or, the Decline of Mars (Ardis, New York).

  207. Tsunoda S. I. and Malmberg J. H. 1982. “Effect of a Static Electric Field on the Trapping of Beam Electrons in a Slow Wave Structure”, Phys. Rev. Lett., 49: 546–549.

    Article  ADS  Google Scholar 

  208. Tsunoda S. I. 1982. Wave enhancement due to a static electric field, Ph.D. thesis (Univ. California at San Diego, La Jolla, California).

  209. Tsunoda S. I., Doveil F. and Malmberg J. H. 1987. “Experimental test of the quasilinear theory of the interaction between a weak warm electron beam and a spectrum of waves”, Phys. Rev. Lett., 58: 1112–1115.

    Article  ADS  Google Scholar 

  210. Tucek J. C., Basten M. A., Gallagher D. A. and Kreischer K. E. 2016. “Operation of a compact 1.03 THz power amplifier”, 17th IEEE International Vacuum Electronics Conference 2016 Monterey, https://doi.org/10.1109/IVEC.2016.7561772.

  211. Tweether website, https://doi.org/tweether.eu/.

  212. Unknown. 1920a. “The Eiffel Tower Radio Station”, Radio News, 2(6): 350–352, 417.

    Google Scholar 

  213. Unknown. 1920b. “Current Topics and Events”, Nature, 115 505–506, §7.

    Google Scholar 

  214. Unknown. 1927. “Radio board tests television process; Finds demonstration satisfactory and will keep top air band for it”, The New York Times, p. 17.

  215. Unknown. 1951. “Manchester-Edinburgh Television Radio Relay System” Post Office Electrical Engineers’ J., 44: 33–34.

    Google Scholar 

  216. Unknown. 2017. “Le satellite Telkom 1 ne répond plus, le système bancaire touché”, le Courrier International.

  217. Verne J. 1865. De la Terre à la Lune, trajet direct en 97 heures 20 minutes.

  218. Voge J. 1946. “Sur deux schémas d’amplificateurs électroniques pour très hautes fréquences à onde progressive”, Comptes Rendus Acad. Sci., 223: 1117–1119.

    Google Scholar 

  219. Voge J. 1957a. “Tubes à onde progressive”, Ann. Télécommun., 12(3): 92–104.

    Google Scholar 

  220. Voge J. 1957b. “Tubes à onde progressive”, Ann. Télécommun., 12(4): 105–119.

    Google Scholar 

  221. Voge J. 1973. Les Tubes aux Hyperfréquences (Collection Technique et Scientifique du CNET, Éditions Eyrolles, Paris), 4e édition.

  222. Warnecke R. R. 1956. “Principaux résultats acquis dans le domaine des tubes électroniques pour hyperfréquences”, Congrès International Tubes Hyperfréquences, 1956, Paris, printed in Onde Élec., 36(356): 875–887.

    Google Scholar 

  223. Wathen R. L. 1954. “The traveling wave tube–A record of its early history”, J. Franklin Inst., 258(6): 429–442.

    Article  Google Scholar 

  224. Wessel-Berg T. 1957. “A General Theory of Klystrons with Arbitrary, Extended Interaction Fields”, Report No. 376 (Microwave Lab., StanfordUniv., Stanford).

  225. White L. 1952. Final Report, Project Hermes V-2 Missile Program (Report No. R52A0510, General Electric Company, Schenectady, NY).

  226. Whitmore W. (Editor) 1946. “New Traveling Wave Tube”, Western Electric Oscillator, 5: 35.

    Google Scholar 

  227. Wichter Z. 2017. “Harold Rosen, Who Ushered in the Era of Communication Satellites, Dies at 90”, The New York Times.

  228. Wildhack W. A. (Editor) 1946. “New Instruments: Beam Traveling-Wave Amplifier Tube”, Rev. Sci. Instrum., 17(12): 559–560.

    ADS  Google Scholar 

  229. Young L. H. (Editor) 1965. “Special Report : Japanese technology”, Electronics, 38(25): 77–112.

    Google Scholar 

  230. Zaleski R., Mirczak W., Staich S., Caverly R., Smith E., Teti N., Vaught W. L. and Olney D. 2011. “Innovative Approach Enabled the Retirement of TDRS-1 Compliant with NASA Orbital Debris Requirements”, 2011 IEEE Aerospace Conference.

  231. Zhang X., Feng J., Cai J., Wu X., Du Y., Chen J., Li S. and Meng W. 2017. “Design and Experimental Study of 250-W W-band Pulsed TWT With 8-GHz Bandwidth”, IEEE Trans. Electron Devices, 64(12): 5151–5156.

    Article  ADS  Google Scholar 

  232. Zworykin V. K. 1933. “Television with cathode-ray tubes”, J. Inst. Electr. Eng., 73(442): 437–451.

    Google Scholar 

  233. Zworykin V. K. 1937. Direction indicator, U.S. Patent 2, 103, 507, filed March 31, 1936, issued December 28, 1937

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien F. G. Minenna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minenna, D.F.G., André, F., Elskens, Y. et al. The traveling-wave tube in the history of telecommunication. EPJ H 44, 1–36 (2019). https://doi.org/10.1140/epjh/e2018-90023-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2018-90023-1

Navigation