Skip to main content
Log in

Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Integrating multiple functions into one gel that can be widely applied to electronic devices as well as chemical and biomedical engineering remains a big challenge. Here, a multifunctional ionic liquid/dynamic covalent bonds (ionic/DCB) type gel was designed and synthesized via one-pot polymerization. With the assistance of electrostatic interaction provided by the imidazolium cations of IL and the reversible DCB of boronic ester, as-prepared ionic/DCB gel showed good stretchable properties and high ionic conductivity at ambient conditions. In addition, the electrostatic interaction between imidazolium cations and sulfonate anions and the reversible DCB led to enhanced chain mobility and thereby excellent self-healing properties. Particularly, sulfonate anions in ionic/DCB gel could alleviate the migration of electronegative polysulfide and promote the transportation of electropositive lithium ion in lithium-sulfur battery system. Therefore, this work provides a new insight to promote the current research on self-healing gels, hopefully expanding their applications in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–980.

    Article  CAS  Google Scholar 

  2. By, E.; Ghosh, S. K. Self-healing materials. Adv. Mater. 2010, 22, 5424–5430.

    Article  Google Scholar 

  3. Brown, E. N.; White, S. R.; Sottos, N. R. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci. 2004, 39, 1703–1710.

    Article  CAS  Google Scholar 

  4. Yang, L.; Lu, L.; Zhang, C. Highly stretchable and self-healing hydrogels based on poly(acrylic acid) and functional POSS. Chinese J. Polym. Sci. 2016, 34, 185–194.

    Article  CAS  Google Scholar 

  5. Wathier, M.; Grinstaff, M. W. Synthesis and creep-recovery behavior of a neat viscoelastic polymeric network formed through electrostatic interactions. Macromolecules 2010, 43, 9529–9533.

    Article  CAS  Google Scholar 

  6. Zhang, Y.; Liang, L.; Chen, Y.; Chen, X. M.; Liu, Y. Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin of pseudorotaxane and clay. Soft Matter 2018, 15, 73–77.

    Article  Google Scholar 

  7. Rahman, M. A.; Penco, M.; Peroni, I.; Ramorino, G.; Grande, A. M.; Di Landro, L. Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl. Mater. Interfaces 2011, 3, 4865–4874.

    Article  CAS  Google Scholar 

  8. Luan, Y.; Zhang, X.; Jiang, S.; Chen, J.; Lyu, Y. Self-healing supramolecular polymer composites by hydrogen bonding interactions between hyperbranched polymer and graphene oxide. Chinese J. Polym. Sci. 2018, 36, 584–591.

    Article  CAS  Google Scholar 

  9. Liu, C.; Zhang, A.; Ye, L.; Feng, Z. Self-healing biodegradable poly(urea-urethane) elastomers based on hydrogen bonding interactions. Chinese J. Polym. Sci. 2013, 31, 251–262.

    Article  CAS  Google Scholar 

  10. Zhang, Q.; Zhu, X.; Li, C. H.; Cai, Y.; Jia, X.; Bao, Z. Disasso-ciation and reformation under strain in polymer with dynamic metal-ligand coordination cross-linking. Macromolecules 2019, 52, 660–668.

    Article  CAS  Google Scholar 

  11. Burnworth, M.; Tang, L.; Kumpfer, J. R.; Duncan, A. J.; Beyer, F. L.; Fiore, G. L.; Rowan, S. J.; Weder, C. Optically healable supramolecular polymers. Nature 2011, 472, 334–337.

    Article  CAS  Google Scholar 

  12. Yang, Q.; Wang, P.; Zhao, C.; Wang, W.; Yang, J.; Liu, Q. Light-switchable self-healing hydrogel based on host-guest macro-crosslinking. Macromol. Rapid Commun. 2017, 38, 1600741.

    Article  Google Scholar 

  13. Nakahata, M.; Takashima, Y.; Harada, A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol. Rapid Commun. 2016, 37, 86–92.

    Article  CAS  Google Scholar 

  14. Guan, Y.; Zhang, Y. Boronic acid-containing hydrogels: Synthesis and their applications. Chem. Soc. Rev. 2013, 42, 8106–8121.

    Article  CAS  Google Scholar 

  15. Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boron-ic ester bonds. J. Am. Chem. Soc. 2015, 137, 6492–6495.

    Article  CAS  Google Scholar 

  16. Yang, W. J.; Tao, X.; Zhao, T.; Weng, L.; Kang, E. T.; Wang, L. Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem. 2015, 6, 7027–7035.

    Article  CAS  Google Scholar 

  17. Oku, T.; Furusho, Y.; Takata, T. A concept for recyclable cross-linked polymers: Topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew. Chem. Int. Ed. 2004, 43, 966–969.

    Article  CAS  Google Scholar 

  18. Wang, L.; Deng, F.; Wang, W.; Li, A.; Lu, C.; Chen, H.; Wu, G.; Nan, K.; Li, L. Construction of injectable self-healinng macroporous hydrogels via a template-free method for tissue engineering and drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 36721–36732.

    Article  CAS  Google Scholar 

  19. Kang, J.; Son, D.; Wang, G. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B.; Bao, Z. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846.

    Article  Google Scholar 

  20. Guo, Y.; Zheng, K.; Wan, P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.

    Article  Google Scholar 

  21. Zuo, X.; Ma, X.; Wu, J.; Deng, X.; Xiao, X.; Liu, J.; Nan, J. Self-supporting ethyl cellulose/poly(vinylidene fluoride) blended gel polymer electrolyte for 5 V high-voltage lithium-ion batteries. Electrochim. Acta 2018, 271, 582–590.

    Article  CAS  Google Scholar 

  22. He, Y.; Liao, S.; Jia, H.; Cao, Y.; Wang, Z.; Wang, Y. A self-healing electronic sensor based on thermal-sensitive fluids. Adv. Mater. 2015, 27, 4622–4627.

    Article  CAS  Google Scholar 

  23. Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318.

    Article  CAS  Google Scholar 

  24. Pu, W.; Jiang, F.; Chen, P.; Wei, B. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction. Soft Matter 2017, 13, 5645–5648.

    Article  CAS  Google Scholar 

  25. Chen, W. P.; Hao, D. Z.; Hao, W. J.; Guo, X. L.; Jiang, L. Hy-drogel with ultrafast self-healing property both in air and underwater. ACS Appl. Mater. Interfaces 2018, 10, 1258–1265.

    Article  CAS  Google Scholar 

  26. Xu, D.; Guo, J.; Yan, F. Porous ionic polymers: Design, synthesis, and applications. Prog. Polym. Sci. 2018, 79, 121–143.

    Article  CAS  Google Scholar 

  27. Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: Template-free synthesis and application as catalyst support. J. Am. Chem. Soc. 2012, 134, 11852–11855.

    Article  CAS  Google Scholar 

  28. Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev. 2017, 46, 1124–1159.

    Article  CAS  Google Scholar 

  29. Ren, Y.; Zhang, J.; Chen, F.; Yan, F. Porous poly(ionic liquid) membranes as efficient and recyclable absorbents for heavy metal ions. Macromol. Rapid Commun. 2017, 38, 1700151.

    Article  Google Scholar 

  30. Guo, P.; Su, A.; Wei, Y.; Liu, X.; Li, Y.; Guo, F.; Li, J.; Hu, Z.; Sun, J. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19413–19420.

    Article  CAS  Google Scholar 

  31. Guo, P.; Zhang, H.; Liu, X.; Sun, J. Counteranion-mediated intrinsic healing of poly(ionic liquid) copolymers. ACS Appl. Mater. Interfaces 2018, 10, 2105–2113.

    Article  CAS  Google Scholar 

  32. Suckow, M.; Mordvinkin, A.; Roy, M.; Singha, N. K.; Hein-rich, G.; Voit, B.; Saalwächter, K.; Böhme, F. Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 2017, 51, 468–479.

    Article  Google Scholar 

  33. Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S. Novel imidazolium-based poly(ionic liquid)s with different coun-terions for self-healing. J. Mater. Chem. A 2017, 5, 25220–25229.

    Article  CAS  Google Scholar 

  34. Xia, Y.; Liang, Y. F.; Xie, D.; Wang, X. L.; Zhang, S. Z.; Xia, X. H.; Gu, C. D.; Tu, J. P. A poly(vinylidene fluoride-hexa-fluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem. Eng. J. 2019, 358, 1047–1053.

    Article  CAS  Google Scholar 

  35. Han, D. D.; Liu, S.; Liu, Y. T.; Zhang, Z.; Li, G. R.; Gao, X. P. Lithiophilic gel polymer electrolyte to stabilizze the lithium anode for a quasi-solid-state lithium-sulfur battery. J. Mater. Chem. A 2018, 6, 18627–18634.

    Article  CAS  Google Scholar 

  36. Deng, Z.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions. Chem. Mater. 2018, 30, 1729–1742.

    Article  CAS  Google Scholar 

  37. Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.; Gu-menna, M. A.; Fomenko, A. A.; Bliznyuk, V. N.; Trachevsky, V. V.; Davydenko, V. V.; Tsukruk, V. V. Protic and aprotic an-ionic oligomeric ionic liquids. Polymer 2014, 55, 3349–3359.

    Article  CAS  Google Scholar 

  38. Guo, R.; Su, Q.; Zhang, J.; Dong, A.; Lin, C.; Zhang, J. Facile access to multi-sensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages. Bio-macromolecules 2017, 18, 1356–1364.

    Article  CAS  Google Scholar 

  39. Khan, A.; Jain, R. K.; Banerjee, P.; Ghosh, B.; Inamuddin; Asiri, A. M. Development, characterization and electromechanical actuation behavior of ionic polymer metal composite actuator based on sulfonated poly(1,4-phenylene ether-ether-sulf-one)/carbon nanotubes. Sci. Rep. 2018, 8, 9909.

    Article  Google Scholar 

  40. Cash, J. J.; Kubo, T.; Bapat, A. P.; Sumerlin, B. S. Room-temperature self-healing polymers based on dynamic-covalent boronic esters. Macromolecules 2015, 48, 2098–2106.

    Article  CAS  Google Scholar 

  41. Bapat, A. P.; Roy, D.; Ray, J. G.; Savin, D. A.; Sumerlin, B. S. Dynamic-covalent macromolecular stars with boronic ester linkages. J. Am. Chem. Soc. 2011, 133, 19832–19838.

    Article  CAS  Google Scholar 

  42. Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation for Distinguished Young Scholars (No. 21425417), the National Natural Science Foundation of China (Nos. 21835005, U1862109, and 21704071), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yan.

Electronic Supplementary Information

10118_2019_2325_MOESM1_ESM.pdf

Electronic supplementary information (ESI) is available free of charge in the online version of this article at https://doi.org/10.1007/s10118-019-2325-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Ren, YY., Li, Q. et al. Conductive, Stretchable, and Self-healing Ionic Gel Based on Dynamic Covalent Bonds and Electrostatic Interaction. Chin J Polym Sci 37, 1053–1059 (2019). https://doi.org/10.1007/s10118-019-2325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2325-x

Keywords

Navigation