Skip to main content

Advertisement

Log in

Study on the electrochemical behaviour of 22k gold (Au-5.8wt.%Cu-2.5wt.%Ag) and Ti containing 22k gold (Au-5.8wt.%Cu-2.0wt.%Ag-0.5wt.%Ti)

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The electrochemical corrosion behaviour of 22k gold (Au-5.8wt.%Cu-2.5wt.%Ag) and Ti containing 22k (Ti-22k) gold (Au-5.8wt.%Cu-2.0wt.%Ag-0.5wt.%Ti) was studied. Elemental Ti was added as the quaternary element to 22k gold by replacing Ag, resulting in the formation of secondary phase precipitates during age hardening treatment, thereby improving the hardness of the alloy. Anodic polarization tests were conducted for both 22k and Ti-22k samples in their as-cast annealed, cold-rolled annealed and age-hardened conditions using 0.9% sodium chloride and 1% lactic acid as medium. The as-cast and annealed 22k samples showed better corrosion resistance in both corrosion media whereas the 22k samples in the cold-rolled, annealed condition and Ti-22k samples in the as-cast, annealed condition showed poor corrosion resistance. After age-hardening treatment, cold-rolled Ti-22k samples showed better corrosion resistance due to the formation of passive layer (of TiO2) on the surface. However, corrosion gets initiated in the age-hardened Ti-22k due to the breaking and decomposition of the passive layer (TiO2) at a potential > 1.3 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gafner G (1989) The development of 990 gold—titanium: its production, use and properties. Gold Bull 22:112–122

    Article  CAS  Google Scholar 

  2. Jacobson DM, Harrison MR, Sangha SP (1996) Stable strengthening of 990-gold. Gold Bull 29:95–100

    Article  CAS  Google Scholar 

  3. Fischer-Bühner J (2005) Hardening of low-alloyed gold. Gold Bull 38:120–131

    Article  Google Scholar 

  4. Ott D (1990) Investment casting of gold-titanium alloys, Proceedings of the 3rd Santa Fe Symposium on Jewelry Manufacturer Technology, 31–40

  5. Corti C, Holliday R (2010) Gold: Science and Applications, CRC Press, USA

  6. Canay Ş, Öktemer M (1992) In vitro corrosion behavior of 13 prosthodontic alloys. Quintessence Int 23:279–287

    CAS  Google Scholar 

  7. McKinney RV, Lemons JE (1985) The Dental Implant: Clinical and Biological Response of Oral Tissues. Littleton, MA, PSG Publishing, 1-18

  8. Corso PP Jr, German RM, Simmons HD Jr (1985) Corrosion evaluation of gold-based dental alloys. J Dent Res 64:854–859

    Article  CAS  Google Scholar 

  9. Liu Y, Cheng YF (2010) Role of second phase particles in pitting corrosion of 3003 Al alloy in NaCl solution. Mater Corros 61:211–217

    Article  CAS  Google Scholar 

  10. Yuan JP, Li W, Liu WM (2013) Nickel release rate of 18 KW gold alloy for ornaments. Rare Metals 32:33–39

    Article  CAS  Google Scholar 

  11. Cason C, Pezzato L, Breda et al (2015) Effect of microstructure and residual stresses, generated from different annealing and deformation processes, on the corrosion and mechanical properties of gold welding alloy wires. Gold Bull 48:135–145

    Article  CAS  Google Scholar 

  12. Takada Y, Ito M, Kimura K, Okuno O (2005) Electrochemical properties and released ions of Au-1.6 mass% Ti alloy. Dent Mater J 24:153–162

    Article  CAS  Google Scholar 

  13. Corti CW (2001) Assaying of gold jewellery–choice of technique. Gold Technol 32:20–30

    Google Scholar 

  14. Knosp H, Holliday RJ, Corti CW (2003) Gold in dentistry: alloys, uses and performance. Gold Bull 36:93–102

    Article  Google Scholar 

  15. Jiang H, Yao Y, Zhu Y et al (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe–N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl Mater Interfaces 7:21511–21520

    Article  CAS  Google Scholar 

  16. Kim HI, Seol HJ, Bae DH et al (1999) Isothermal age-hardening behaviour in a Au-1.6 wt% Ti alloy. Dent Mater J18:32–41

    Article  Google Scholar 

  17. ISO 3160-2:2003 (2003) Watch-cases and accessories: gold alloy coverings—part 2: determination of fineness, thickness, corrosion resistance, and adhesion. International Organization for Standardization [ISO], Geneva

    Google Scholar 

  18. Pandora Jewelry USA (2013) https://sanevyour.wordpress.com/2013/04/11/gold-jewelry-color-change-or-fade-and-sweat-of-the-human-body-has-a-close-relationship/. Accessed 28 July 2018

  19. Cretu C, Van Der Lingen E, Glaner L (2000) Hard 22 carat gold alloy. Gold Technol 29:25–28

    Google Scholar 

  20. Zatkalíková V, Oravcová M, Palček P et al (2018) The effect of surface treatment on corrosion resistance of austenitic biomaterial. T Famena 41:25–34

    Article  Google Scholar 

  21. Osório WR, Freire CM, Garcia A (2005) The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Mat Sci Eng A-Struct 402:22–32

    Article  Google Scholar 

  22. Forty AJ (1981) Micromorphological studies of the corrosion of gold alloys. Gold Bull 14:25–35

    Article  CAS  Google Scholar 

  23. Cortada M, Giner LL, Costa S et al (2000) Galvanic corrosion behavior of titanium implants coupled to dental alloys. J Mater Sci Mater Med 11:287–293

    Article  CAS  Google Scholar 

  24. StadnichenkoA I, Koshcheev SV, Boronin AI (2007) Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Mosc Univ Chem Bull 62:343–349

    Article  Google Scholar 

  25. Peuckert M, Coenen FP, Bonzel HP (1984) On the surface oxidation of a gold electrode in 1N H2S04 electrolyte. Surf Sci 141:515–532

    Article  CAS  Google Scholar 

  26. Dickinson T, Povey AF, Sherwood PM (1975) X-ray photoelectron spectroscopic studies of oxide films on platinum and gold electrodes. J. Chem. Soc. Faraday Trans 1:298–311

    Article  Google Scholar 

  27. Gao XY, Wang SY, Li J et al (2004) Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films 455:438–442

    Article  Google Scholar 

  28. Lu G, Bernasek SL, Schwartz J (2000) Oxidation of a polycrystalline titanium surface by oxygen and water. Surf Sci 458:80–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors profoundly thank Mr. Santhosh Srinivas, Mr. Sanjay Renewade, Mr. S. Seshadri and Mr. Raghothaman and the entire Jewelry Division (TANISHQ) of Titan Company Ltd. Hosur, India, for supplying gold for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vinodkumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saradesh, K.M., Patil, I., Sivaprahasam, D. et al. Study on the electrochemical behaviour of 22k gold (Au-5.8wt.%Cu-2.5wt.%Ag) and Ti containing 22k gold (Au-5.8wt.%Cu-2.0wt.%Ag-0.5wt.%Ti). Gold Bull 52, 175–183 (2019). https://doi.org/10.1007/s13404-019-00263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-019-00263-z

Keywords

Navigation