Skip to main content
Log in

Unraveling the Nature of Weak Hydrogen Bonds and Intermolecular Interactions Involving Elements of Group 14–17 via Experimental Charge Density Analysis

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Mapping of charge densities in molecular crystals has been contemplated ever since it was recognized that X-rays are scattered by the electron density in the crystal. The methodology both from the experimental and theoretical perspective was standardized and applied extensively only during the last few decades, as technological advances were a prerequisite in both data collection and computation. Multipole formalism developed for accurate X-ray diffraction data is routinely utilized in conjunction with the concept of atoms in molecules to obtain quantitative estimates of the topological properties in molecular crystals which allow the evaluation of both bonded and non-bonded contacts. Recently, with the advent of quantum crystallography, combining Hirshfeld atom refinement along with libraries of extremely localized molecular orbitals, HAR–ELMOs, has emerged as an alternate approach. Apart from the weak hydrogen bonds, other highly directional non-bonded contacts like halogen, pnicogen, chalcogen and carbon bonds have been subjected to charge density analysis to experimentally observe and quantify σ-holes using experimental high-resolution X-ray diffraction data. The recognition of lack of directional preferences in hydrophobic interactions is demonstrated experimentally which might have far reaching consequences in the areas of materials and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:

(diagram reproduced from the website, http://www.ruudvisser.com/publications/talks/)

Figure 2:

(Sounak Sarkar, PhD thesis).

Figure 3:
Figure 4:
Figure 5:
Figure 6:

reproduced from thesis of Dr. Sounak Sarkar, IISc.

Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Similar content being viewed by others

References

  1. Desiraju GR, Vittal JJ, Ramanan A (2012) Crystal engineering: a textbook. World Scientific Publishing Company Incorporated, Singapore

    Google Scholar 

  2. Koritsanszky TS, Coppens P (2001) Chemical applications of X-ray charge-density analysis. Chem Rev 101(6):1583

    CAS  Google Scholar 

  3. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B 60:627

    Google Scholar 

  4. Krawczuk A, Macchi P (2014) Charge density analysis for crystal engineering. Chem Cent J 8(1):68

    Google Scholar 

  5. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr Sect A 34:909

    Google Scholar 

  6. Koritsanszky T et al (2015) XD2015—a computer program package for multipole refinement, topological analysis of charge densities and evaluation of intermolecular energies from experimental and theoretical structure factors. University at Buffalo, State University of New York, NY, USA

    Google Scholar 

  7. Frisch M et al (2009) Gaussian 09, revision a. 02. Gaussian Inc., Wallingford, CT, p 200

    Google Scholar 

  8. Dovesi R et al (2017) CRYSTAL17 user’s manual. Università di Torino, Torino

    Google Scholar 

  9. Jayatilaka D, Grimwood DJ (2001) Wavefunctions derived from experiment. I. Motivation and theory. Acta Crystallogr Sect A 57(1):76

    CAS  Google Scholar 

  10. Capelli SC et al (2014) Hirshfeld atom refinement. IUCr J 1(5):361

    CAS  Google Scholar 

  11. Malaspina LA, Wieduwilt EK, Bergmann J, Kleemiss F, Meyer B, Ruiz-López MF, Pal R, Hupf E, Beckmann J, Piltz RO, Edwards AJ, Grabowsky S, Genoni A (2019) Fast and accurate quantum crystallography: from small to large, from light to heavy. J Phys Chem Lett 10:6973

    CAS  Google Scholar 

  12. Massa L, Huang L, Karle J (1995) Quantum crystallography and the use of kernel projector matrices. Int J Quantum Chem 56(S29):371

    Google Scholar 

  13. Clinton WL, Galli AJ, Massa LJ (1969) Direct determination of pure-state density matrices. II. construction of constrained idempotent one-body densities. Phys Rev 177(1):7

    CAS  Google Scholar 

  14. Tanaka K et al (2008) X-ray atomic orbital analysis. I. Quantum-mechanical and crystallographic framework of the method. Acta Crystallogr Sect A 64(4):437

    CAS  Google Scholar 

  15. Coppens P, Guru Row TN, Leung P, Stevens ED, Becker PJ, Yang YW (1979) Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr Sect A 35:63

    Google Scholar 

  16. Bader RFW (1990) Atoms in molecules. Wiley, New York

    Google Scholar 

  17. Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl 34:2311

    CAS  Google Scholar 

  18. Desiraju GR (1997) Designer crystals: intermolecular interactions, network structures and supramolecular synthons. Chem Commun 16:1475

    Google Scholar 

  19. Nangia A, Desiraju GR (1998) Design of organic solids. In: Weber E (ed) Perspectives in supramolecular chemistry. Springer, Berlin, pp 57–95

    Google Scholar 

  20. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120

    CAS  Google Scholar 

  21. Steiner T (2003) O hydrogen bonding in crystals. Cryst Rev 9(2–3):177

    CAS  Google Scholar 

  22. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747

    CAS  Google Scholar 

  23. Munshi P, Guru Row TN (2002) Electron density study of 2H-chromene-2-thione. Acta Crystallogr Sect B 58:1011

    Google Scholar 

  24. Mallinson PR, Smith GT, Wilson CC, Grech E, Wozniak KJ (2003) From weak interactions to covalent bonds: a continuum in the complexes of 1,8-Bis(dimethylamino)naphthalene. J Am Chem Soc 125:4259

    CAS  Google Scholar 

  25. Munshi P, Guru Row TN (2005) Exploring the lower limit in hydrogen bonds: analysis of weak C-H...O and C-H...pi interactions in substituted coumarins from charge density analysis. J Phys Chem A 109:659

    CAS  Google Scholar 

  26. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15(27):11178

    CAS  Google Scholar 

  27. Desiraju GR et al (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1711

    CAS  Google Scholar 

  28. Williams D, Hsu LY (1985) New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr Sect A 41:296

    Google Scholar 

  29. Nyburg SC, Wong-Ng W (1979) Anisotropic atom–atom forces and the space group of solid chlorine. Proc R Soc Lond A 367:29

    CAS  Google Scholar 

  30. Desiraju GR, Parthasarathy R (1989) The nature of halogen.cntdot..cntdot..cntdot.halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? J Am Chem Soc 111(23):8725

    CAS  Google Scholar 

  31. Rosenfield RE Jr, Parthasarathy R, Dunitz JDJ (1977) Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J Am Chem Soc 99(14):4860

    CAS  Google Scholar 

  32. Guru Row TN, Parthasarathy R (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. Sulfur.cntdot..cntdot..cntdot.sulfur interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103(2):477

    Google Scholar 

  33. Mani D, Arunan E (2013) The X-CY (X = O/F, Y = O/S/F/Cl/Br/N/P)‘carbon bond’ and hydrophobic interactions. Phys Chem Chem Phys 15(34):14377

    CAS  Google Scholar 

  34. Desiraju G, Steiner T (1999) The weak hydrogen bond. In Structural Chemistry and Biology. Oxford University Press, Oxford

  35. Volkov A, Koritsanszky T, Coppens P (2004) Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities. Chem Phys Lett 391:170

    CAS  Google Scholar 

  36. Thomas SP, Pavan MS, Guru Row TN (2012) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Cryst Growth Des 12:6083

    CAS  Google Scholar 

  37. Thalladi VR, Weiss H-C, Bläser D, Boese R, Nangia A, Desiraju GR (1998) C−H···F Interactions in the crystal structures of some fluorobenzenes. J Am Chem Soc 120:8702

    CAS  Google Scholar 

  38. Metrangolo P, Murray JS, Pilati T, Politzer P, Resnati G, Terraneo G (2011) Fluorine-centered halogen bonding: a factor in recognition phenomena and reactivity. Cryst Growth Des 11:4238

    CAS  Google Scholar 

  39. Hathwar VR, Guru Row T (2011) Charge density analysis of heterohalogen (Cl···F) and homohalogen (F···F) intermolecular interactions in molecular crystals: importance of the extent of polarizability. Cryst Growth Des 11:1338

    CAS  Google Scholar 

  40. Pavan MS, Prasad KD, Guru Row TN (2013) Halogen bonding in fluorine: experimental charge density study on intermolecular F⋯F and F⋯S donor–acceptor contacts. Chem Commun 49:7558

    CAS  Google Scholar 

  41. Thomas SP, Jayatilaka D, Guru Row TN (2015) S⋯O chalcogen bonding in sulfa drugs: insights from multipole charge density and X-ray wavefunction of acetazolamide. Phys Chem Chem Phys 17:25411

    CAS  Google Scholar 

  42. Sarkar S, Pavan MS, Guru Row TN (2015) Experimental validation of ‘pnicogen bonding’ in nitrogen by charge density analysis. Phys Chem Chem Phys 17:2330

    CAS  Google Scholar 

  43. Thomas SP, Nagarajan K, Guru Row TN (2012) Polymorphism and tautomeric preference in fenobam and the utility of NLO response to detect polymorphic impurities. Chem Commun 48:10559

    CAS  Google Scholar 

  44. Bundhun A, Ramasami P, Murray J, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M = C, Si, Ge and X = F, Cl, Br, I). J Mol Model 19:2739

    CAS  Google Scholar 

  45. Thomas SP, Pavan MS, Guru Row TN (2014) Experimental evidence for ‘carbon bonding’ in the solid state from charge density analysis. Chem Commun 50:49

    CAS  Google Scholar 

  46. Sarkar S, Thomas SP, Lokeswara Rao P, Edwards AJ, Grosjean A, Ramanathan KV, Guru Row TN (2019) Experimental insights into the electronic nature, spectral features, and role of entropy in short CH3···CH3 hydrophobic interactions. J Phys Chem Lett 10(22):7224

    CAS  Google Scholar 

Download references

Acknowledgements

The work reported in this review was mainly carried out by my students and post-doctoral associates in my group. I should specifically acknowledge the contributions from Drs. Parthapratim Munshi, Venkatesha Hathwar, Sajesh P. Thomas, Mysore S. Pavan, Sounak Sarkar who essentially contributed to the contents of this article. I would like to thank Indian Institute of Science and DST, India for the funding to procure the X-ray facility. I also acknowledge the funding provided under the J.C. Bose fellowship by DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Guru Row.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Row, T.N.G. Unraveling the Nature of Weak Hydrogen Bonds and Intermolecular Interactions Involving Elements of Group 14–17 via Experimental Charge Density Analysis. J Indian Inst Sci 100, 203–220 (2020). https://doi.org/10.1007/s41745-019-00148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00148-2

Navigation