Skip to main content
Log in

Lie-Series Solution of Restricted Three-Body Problem: Application to Binary Stellar Systems

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The purpose of this present paper is to find the Lie-series solutions of the photo-gravitational restricted three-body problem and to apply this Lie-series theory in binary stellar systems. In this paper, we have taken four stellar binary systems namely Kepler-34, Kepler-35, Kepler-413 and Kepler-16. Firstly, the zero-velocity curves are studied in the four binary stellar systems. The Lie-integration method is a concept to deal with the system of ordinary differential equations(ODEs) with the help of Lie-series. We have applied this method to solve the equations of motion of restricted three-body problem with radiating primaries and obtained the solutions of the equations of motion. Then the solution obtained by Lie-series method is compared with that of obtained from the well known Runge-Kutta method. In addition, we have shown the absolute errors graphically for Lie-series method and Runge-Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abouelmagd, E.I., Guirao, J.L.: On the perturbed restricted three-body problem. Appl. Math. Nonlinear Sci. 1(1), 123–144 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abouelmagd, E.I., Guirao, J.L., Mostafa, A.: Numerical integration of the restricted three-body problem with lie series. Astrophys. Space Sci. 354(2), 369–378 (2014)

    Article  Google Scholar 

  3. Abouelmagd, E.I., Alhothuali, M., Guirao, J.L., Malaikah, H.: The effect of zonal harmonic coefficients in the framework of the restricted three-body problem. Adv. Space Res. 55(6), 1660–1672 (2015)

    Article  Google Scholar 

  4. Abouelmagd, E.I., Mostafa, A., Guirao, J.L.: A first order automated lie transform. Int. J. Bifur. Chaos 25(14), 1540,026 (2015)

    Article  MathSciNet  Google Scholar 

  5. Abouelmagd, E.I., Alzahrani, F., Guirao, J., Hobiny, A.: Periodic orbits around the collinear libration points. J Nonlinear Sci Appl(JNSA) 9(4), 1716–1727 (2016)

    Article  MathSciNet  Google Scholar 

  6. Alzahrani, F., Abouelmagd, E.I., Guirao, J.L., Hobiny, A.: On the libration collinear points in the restricted three–body problem. Open Phys. 15(1), 58–67 (2017)

    Article  Google Scholar 

  7. Ansari, A.A.: Investigation of the effect of albedo and oblateness on the circular restricted four variable bodies problem. Appl. Math. Nonlinear Sci. 2(2), 529–542 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bancelin, D., Hestroffer, D., Thuillot, W.: Numerical integration of dynamical systems with lie series. Celest. Mech. Dyn. Astron. 112(2), 221–234 (2012)

    Article  Google Scholar 

  9. Delva, M.: A l+ie integrator program and test for the elliptic restricted three body problem. Astron. Astrophys. Suppl. Series 60, 277–284 (1985)

    Google Scholar 

  10. Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prˇsa, A., Welsh, W.F., Quinn, S.N., et al.: Kepler-16: A transiting circumbinary planet. Science 333(6049), 1602–1606 (2011)

    Article  Google Scholar 

  11. Dvorak, R., Pilat-Lohinger, E.: On the dynamical evolution of the Atens and the Apollos. Planet. Space Sci. 47, 665–677 (1999). https://doi.org/10.1016/S0032-0633(98)00145-7

    Article  Google Scholar 

  12. Elshaboury, S., Abouelmagd, E.I., Kalantonis, V., Perdios, E.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits. Astrophys. Space Sci. 361(9), 315 (2016)

    Article  MathSciNet  Google Scholar 

  13. Ershkov, S.V.: The yarkovsky effect in generalized photogravitational 3-body problem. Planet. Space Sci. 73(1), 221–223 (2012)

    Article  Google Scholar 

  14. Gröbner, W: Die Lie-Reihen und ihre Anwendungen, vol 3. Deutscher Verlag der Wissenschaften (1967)

  15. Hanslmeier, A., Dvorak, R.: Numerical integration with lie series. Astron. Astrophys. 132, 203 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Jiang, G., Yeh, L.C.: On the chaotic orbits of disk-star-planet systems. Astron. J. 128(2), 923 (2004)

    Article  Google Scholar 

  17. Kushvah, B.S., Kishor, R., Dolas, U.: Existence of equilibrium points and their linear stability in the generalized photogravitational chermnykh-like problem with power-law profile. Astrophys. Space Sci. 337(1), 115–127 (2012)

    Article  Google Scholar 

  18. Mia, R., Kushvah, B.S.: Stability and fourier-series periodic solution in the binary stellar systems. Few-Body Syst. 57(9), 851–867 (2016). https://doi.org/10.1007/s00601-016-1112-2

    Article  Google Scholar 

  19. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  20. Pál, A: Lie-series for orbital elements: Ii. the spatial case. Celest. Mech. Dyn. Astron. 124(1), 97–107 (2016)

    Article  MathSciNet  Google Scholar 

  21. Pál, A, Süli, Á.: Solving linearized equations of the n-body problem using the lie-integration method. Mon. Not. R. Astron. Soc. 381(4), 1515–1526 (2007)

    Article  Google Scholar 

  22. Pal, A.K., Kushvah, B.S.: Geometry of halo and lissajous orbits in the circular restricted three-body problem with drag forces. Mon. Not. R. Astron. Soc. 446(1), 959–972 (2014)

    Article  Google Scholar 

  23. Pathak, N., Elshaboury, S.: On the triangular points within frame of the restricted three–body problem when both primaries are triaxial rigid bodies. Appl. Math. Nonlinear Sci. 2(2), 495–508 (2017)

    Article  MathSciNet  Google Scholar 

  24. Ragos, O., Zagouras, C.G.: On the existence of the ’out of plane’ equilibrium points in the photogravitational restricted three-body problem. Ap&SS 209, 267–271 (1993). https://doi.org/10.1007/BF00627446

    Article  MATH  Google Scholar 

  25. Steeb, W.H.: Lie series technique, ordinary differential equations and dynamical integration. Zeitschrift fur Naturforschung A-J. Phys. Sci. 59(6), 349–352 (2004)

    Google Scholar 

  26. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  27. Welsh, W.F., Orosz, J.A., Carter, J.A., Fabrycky, D.C., Ford, E.B., Lissauer, J.J., Prša, A, Quinn, S.N., Ragozzine, D., Short, D.R., et al.: Transiting circumbinary planets kepler-34 b and kepler-35 b. Nature 481(7382), 475 (2012)

    Article  Google Scholar 

  28. Zagouras, C.G.: Periodic motion around the triangular equilibrium points of the photogravitational restricted problem of three bodies. Celest. Mech. Dyn. Astron. 51, 331–348 (1991). https://doi.org/10.1007/BF00052926

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am thankful to Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for supporting library visits and for the use of computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Mia.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mia, R. Lie-Series Solution of Restricted Three-Body Problem: Application to Binary Stellar Systems. J Astronaut Sci 67, 59–76 (2020). https://doi.org/10.1007/s40295-019-00172-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00172-5

Keywords

Navigation