Skip to main content
Log in

Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Aqueous foams are dispersions of gas bubbles in water, stabilized by surfactant, and sometimes particles. This multiphasic composition gives rise to complex rheological behavior under deformation. Understanding this behavior is important in many applications. Foam shows nonlinear rheological behavior at high deformation, which can be investigated by the large amplitude oscillatory shear (LAOS) experiments. In the present work, we have performed a systematic LAOS study of foam stabilized by 0.1 mol m−3 hexadecyltrimethylammonium bromide and 0.5 wt.% silica nanoparticles. The Lissajous-Bowditch curves and stress waveforms were analyzed at various strain amplitudes. These curves were fitted by Fourier transform rheology and Chebyshev polynomials to understand the contribution of the higher harmonic terms in LAOS. The intracycle LAOS behavior was explained based on the sequence of physical processes. The foam exhibited intracycle strain-hardening and shear-thinning at high deformation. Shear-thickening behavior was observed at moderate deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmadi, Y., S.E. Eshraghi, P. Bahrami, M. Hasanbeygi, Y. Kazemzadeh, and A. Vahedian, 2015, Comprehensive wateralternating-gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests, J. Pet. Sci. Eng. 133, 123–129.

    Article  Google Scholar 

  • Balmforth, N.J., I.A. Frigaard, and G. Ovarlez, 2014, Yielding to stress: Recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech. 46, 121–146.

    Article  Google Scholar 

  • Bird, R.B., R.C. Armstrong, and O. Hassager, 1987, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics John Wiley & Sons, New York.

    Google Scholar 

  • Blanco, E., S. Lam, S.K. Smoukov, K.P. Velikov, S.A. Khan, and O.D. Velev, 2013, Stability and viscoelasticity of magnetopickering foams, Langmuir 29, 10019–10027.

    Article  Google Scholar 

  • Calin, A., M. Wilhelm, and C. Balan, 2010, Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure, J. Non-Newton. Fluid Mech. 165, 1564–1577.

    Article  Google Scholar 

  • Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol. 49, 747–758.

    Article  Google Scholar 

  • D'Avino, G., F. Greco, M.A. Hulsen, and P.L. Maffettone, 2013, Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations, J. Rheol. 57, 813–839.

    Article  Google Scholar 

  • Denkov, N.D., S. Tcholakova, K. Golemanov, K.P. Ananthapadmanabhan, and A. Lips, 2008, Viscous friction in foams and concentrated emulsions under steady shear, Phys. Rev. Lett. 100, 138301.

    Article  Google Scholar 

  • Denkov, N.D., S. Tcholakova, K. Golemanov, K.P. Ananthpadmanabhan, and A. Lips, 2009, The role of surfactant type and bubble surface mobility in foam rheology, Soft Matter 5, 3389–3408.

    Article  Google Scholar 

  • Dickinson, E., 2015, Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability, J. Colloid Interface Sci. 449, 38–45.

    Article  Google Scholar 

  • Dimitriou, C.J. and G.H. McKinley, 2014, A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid, Soft Matter 10, 6619–6644.

    Article  Google Scholar 

  • Dimitriou, C.J., R.H. Ewoldt, and G.H. McKinley, 2013, Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress), J. Rheol. 57, 27–70.

    Article  Google Scholar 

  • Erni, P. and A. Parker, 2012, Nonlinear viscoelasticity and shear localization at complex fluid interfaces, Langmuir 28, 7757–7767.

    Article  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Ewoldt, R.H., C. Clasen, A.E. Hosoi, and G.H. McKinley, 2007, Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion, Soft Matter 3, 634–643.

    Article  Google Scholar 

  • Ewoldt, R.H. and G.H. McKinley, 2010, On secondary loops in LAOS via self-intersection of Lissajous-Bowditch curves, Rheol. Acta 49, 213–219.

    Article  Google Scholar 

  • Fraggedakis, D., Y. Dimakopoulos, and J. Tsamopoulos, 2016, Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids, Soft Matter 12, 5378–5401.

    Article  Google Scholar 

  • Giacomin, A.J., P.H. Gilbert, D. Merger, and M. Wilhelm, 2015, Large-amplitude oscillatory shear: Comparing parallel-disk with cone-plate flow, Rheol. Acta 54, 263–285.

    Article  Google Scholar 

  • Giesekus, H., 1982, A simple contitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newton. Fluid Mech. 11, 69–109.

    Article  Google Scholar 

  • Graham, M.D., 1995, Wall slip and the nonlinear dynamics of large amplitude oscillatory shear flows, J. Rheol. 39, 697–712.

    Article  Google Scholar 

  • Gurnon, A.K. and N.J. Wagner, 2012, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles, J. Rheol. 56, 333–351.

    Article  Google Scholar 

  • Habibi, M., M. Dinkgreve, J. Paredes, M.M. Denn, and D. Bonn, 2016, Normal stress measurement in foams and emulsions in the presence of slip, J. Non-Newton. Fluid Mech. 238, 33–43.

    Article  Google Scholar 

  • Höhler, R. and S. Cohen-Addad, 2005, Rheology of liquid foam, J. Phys.:Condens. Matter 17, 1041–1069.

    Google Scholar 

  • Hoyle, D.M., D. Auhl, O.G. Harlen, V.C. Barroso, M. Wilhelm, and T.C.B. McLeish, 2014, Large amplitude oscillatory shear and Fourier transform rheology analysis of branched polymer melts, J. Rheol. 58, 969–997.

    Article  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2008, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems, Macromolecules 42, 411–422.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Hyun, K., S.H. Kim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech. 107, 51–65.

    Article  Google Scholar 

  • Jacob, A.R., A.P. Deshpande, and L. Bouteiller, 2014, Large amplitude oscillatory shear of supramolecular materials, J. Non-Newton. Fluid Mech. 206, 40–56.

    Article  Google Scholar 

  • Khair, A.S., 2016, Large amplitude oscillatory shear of the Giesekus model, J. Rheol. 60, 257–266.

    Article  Google Scholar 

  • Khan, S.A. and R.C. Armstrong, 1986, Rheology of foams: 1. Theory for fry foams, J. Non-Newton. Fluid Mech. 22, 1–22.

    Article  Google Scholar 

  • Khandavalli, S. and J.P. Rothstein, 2015, Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions, Rheol. Acta 54, 601–618.

    Article  Google Scholar 

  • Kim, J., D. Merger, M. Wilhelm, and M.E. Helgeson, 2014, Microstructure and nonlinear signatures of yielding in a heterogenous colloidal gel under large amplitude oscillatory shear, J. Rheol. 58, 1359–1390.

    Article  Google Scholar 

  • Labiausse, V., R. Höhler, and S. Cohen-Addad, 2007, Shear induced normal stress differences in aqueous foams, J. Rheol. 51, 479–492.

    Article  Google Scholar 

  • Läuger, J., K. Wollny, and S. Huck, 2002, Direct strain oscillation: A new oscillatory method enabling measurements at very small shear stresses and strains, Rheol. Acta 41, 356–361.

    Article  Google Scholar 

  • López-Barrón, C.R., N.J. Wagner, and L. Porcar, 2015, Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large amplitude oscillatory shear flows, J. Rheol. 59, 793–820.

    Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York.

    Google Scholar 

  • Marze, S., R.M. Guillermic, and A. Saint-Jalmes, 2009, Oscillatory rheology of aqueous foams: Surfactant, liquid fraction, experimental protocol and aging effects, Soft Matter 5, 1937–1946.

    Google Scholar 

  • Mason, J.C. and D.C. Handscomb, 2002, Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton.

    Book  Google Scholar 

  • Mermet-Guyennet, M.R.B., J. Gianfelice de Castro, M. Habibi, N. Martzel, M.M. Denn, and D. Bonn, 2015, LAOS: The strain softening/strain hardening paradox, J. Rheol. 59, 21–32.

    Article  Google Scholar 

  • Moller, P., A. Fall, V. Chikkadi, D. Derks, and D. Bonn, 2009, An attempt to categorize yield stress fluid behaviour, Philos. Trans. R. Soc. Lond Ser. A-Math. Phys. Eng. Sci. 367, 5139–5155.

    Article  Google Scholar 

  • Mooney, M., 1931, Explicit formulas for slip and fluidity, J. Rheol. 210, 210–222.

    Article  Google Scholar 

  • Papon, A., H. Montes, F. Lequeux, and L. Guy, 2010, Nonlinear rheology of model filled elastomers, J. Polym. Sci., Pt. BPolym. Phys. 48, 2490–2496.

    Article  Google Scholar 

  • Phan-Thien, N., M. Newberry, and R.I. Tanner, 2000, Non-linear oscillatory flow of a soft solid-like viscoelastic material, J. Non-Newton. Fluid Mech. 92, 67–80.

    Article  Google Scholar 

  • Poulos, A.S., J. Stellbrink, and G. Petekidis, 2013, Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear, Rheol. Acta 52, 785–800.

    Article  Google Scholar 

  • Princen, H.M., 1982, On the rheology of foams and highly concentrated emulsions, J. Soc. Cosmet. Chem. 33, 371–371.

    Google Scholar 

  • Ptaszek, P., 2015, A geometrical interpretation of large amplitude oscillatory shear (LAOS) in application to fresh food foams, J. Food Eng. 146, 53–61.

    Article  Google Scholar 

  • Radhakrishnan, R. and S.M. Fielding, 2018, Shear banding in large amplitude oscillatory shear (LAOStrain and LAOStress) of soft glassy materials, J. Rheol. 62, 559–576.

    Article  Google Scholar 

  • Renou, F., J. Stellbrink, and G. Petekidis, 2010, Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS), J. Rheol. 54, 1219–1242.

    Article  Google Scholar 

  • Rogers, S.A., 2017, In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity, Rheol. Acta 56, 501–525.

    Article  Google Scholar 

  • Rogers, S.A., B.M. Erwin, D. Vlassopoulos, and M. Cloitre, 2011a, A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid, J. Rheol. 55, 435–458.

    Article  Google Scholar 

  • Rogers, S.A., B.M. Erwin, D. Vlassopoulos, and M. Cloitre, 2011b, Oscillatory yielding of a colloidal star glass, J. Rheol. 55, 733–752.

    Article  Google Scholar 

  • Rogers, S.A. and M.P. Lettinga, 2012, A sequence of physical processes determined and quantified in large amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models, J. Rheol. 56, 1–25.

    Article  Google Scholar 

  • Rouyer, F., S. Cohen-Addad, and R. Höhler, 2005, Is the yield stress of aqueous foam a well-defined quantity?, Colloids Surf. A-Physicochem. Eng. Asp. 263, 111–116.

    Article  Google Scholar 

  • Rouyer, F., S. Cohen-Addad, R. Höehler, P. Sollich, and S.M. Fielding, 2008, The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress Fourier spectrum, Eur. Phys. J. E 27, 309–321.

    Article  Google Scholar 

  • Saint-Jalmes, A. and D.J. Durian, 1999, Vanishing elasticity for wet foams: equivalence with emulsions and role of polydispersity, J. Rheol. 43, 1411–1422.

    Article  Google Scholar 

  • Stickel, J.J., J.S. Knutsen, and M.W. Liberatore, 2013, Response of elastoviscoplastic materials to large amplitude oscillatory shear flow in the parallel-plate and cylindrical-Couette geometries, J. Rheol. 57, 1569–1596.

    Article  Google Scholar 

  • Sugimoto, M., Y. Suzuki, K. Hyun, K.H. Ahn, T. Ushioda, A. Nishioka, T. Taniguchi, and K. Koyama, 2006, Melt rheology of long-chain-branched polypropylenes, Rheol. Acta 46, 33–44.

    Article  Google Scholar 

  • Tammaro, D., G. D'Avino, E. Di Maio, R. Pasquino, M.M. Villone, D. Gonzales, M. Groombridge, N. Grizzuti, and P.L. Maffettone, 2016, Validated modeling of bubble growth, impingement and retraction to predict cell-opening in thermoplastic foaming, Chem. Eng. J. 287, 492–502.

    Google Scholar 

  • Thompson, R.L., A.A. Alicke, and P.R. de Souza Mendes, 2015, Model-based material functions for SAOS and LAOS analyses, J. Non-Newton. Fluid Mech. 215, 19–30.

    Article  Google Scholar 

  • van der Vaart, K., Y. Rahmani, R. Zargar, Z. Hu, D. Bonn, and P. Schall, 2013, Rheology of concentrated soft and hard-sphere suspensions, J. Rheol. 57, 1195–1209.

    Article  Google Scholar 

  • Vishal, B. and P. Ghosh, 2018, Foaming in aqueous solutions of hexadecyltrimethylammonium bromide and silica nanoparticles: Measurement and analysis of rheological and interfacial properties, J. Dispersion Sci. Technol. 39, 62–70.

    Article  Google Scholar 

  • Wagner, M.H., V.H. Rolón-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol. 55, 495–516.

    Article  Google Scholar 

  • Wapperom, P., A. Leygue, and R. Keunings, 2005, Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model, J. Non-Newton. Fluid Mech. 130, 63–76.

    Article  Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83–105.

    Article  Google Scholar 

  • Wilhelm, M., D. Maring, and H.W. Spiess, 1998, Fourier-transform rheology, Rheol. Acta 37, 399–405.

    Article  Google Scholar 

  • Wilhelm, M., K. Reinheimer, and J. Kubel, 2012, Optimizing the sensitivity of FT-rheology to quantify and differentiate for the first time the nonlinear mechanical response of dispersed beer foams of light and dark beer, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. 226, 547–567.

    Google Scholar 

  • Yu, W., P. Wang, and C. Zhou, 2009, General stress decomposition in nonlinear oscillatory shear flow, J. Rheol. 53, 215–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badri Vishal.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishal, B., Ghosh, P. Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow. Korea-Aust. Rheol. J. 30, 147–159 (2018). https://doi.org/10.1007/s13367-018-0015-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-018-0015-9

Keywords

Navigation