Skip to main content
Log in

High-throughput sequencing uncover Ficus tikoua Bur. chloroplast genome

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ficus tikoua Bur., called “di guo”, is a very important economic plant. However, we know little on its molecular mechanisms for a long time. In this study, three F. tikoua chloroplast genomes were first obtained through Illumina sequencing. The F. tikoua Bur. cp genomes exhibited a typical circular structure, including a pair of inverted repeats, a small single copy sequence, and a long single copy sequence. More than 100 genes and about 70 ncRNAs (rRNAs, tRNAs, snRNA, snoRNA, etc.) were identified in each cp genomes. Some repeats, including DNA element, long terminal repeat, small RNA, simple repeat and low complexity, were examined in the three complete cp genomes. In addition, phylogeny tree from six Ficus. species and five Morus. species in family Moracea were constructed for clarifying taxonomy. This data can help further the understanding of evolution and phylogenetic relationships in F. tikoua Bur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cp:

Chloroplast genomes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

CDSs:

Coding sequences

SSR:

Simple sequence repeat

ISSC:

A small single copy sequence

LSC:

A long single copy sequence

IR:

Inverted repeats

snRNA:

Small nuclear RNA

RMB:

Renminbi

Bp:

Base pair

References

  • Belcher S, Williams-Carrier R, Stiffler N, Barkan A (2015) Large-scale genetic analysis of chloroplast biogenesis in maize. Biochem Biophys Acta 1847(9):1004–1016

    CAS  PubMed  Google Scholar 

  • Bru H, Hendrix RW (2002) Phage genomics: small is beautiful. Cell 108(1):13–16

    Article  Google Scholar 

  • Chen Y, Jianga ZX, Comptonc SG, Liua M, Chena XY (2011) Genetic diversity and differentiation of the extremely dwarf Ficus tikoua in Southwestern China. Biochem Syst Ecol 39(4):441–448

    Article  CAS  Google Scholar 

  • Chotewutmontri P, Barkan A (2016) Dynamics of chloroplast translation during chloroplast differentiation in maize. PLoS Genet 12(7):e1006106. https://doi.org/10.1371/journal.pgen.1006-106

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng J-Y, Fu R-H, Compton SG, Hu D-M, Zhang L-S, Yang F, Chen Y, Kjellberg F (2016) Extremely high proportions of male flowers and geographic variation in floral ratios within male figs of Ficus tikoua despite pollinators displaying active pollen collection. Ecol Evol 6:607–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Echt CS, DeVerno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316

    Article  Google Scholar 

  • Fu R-H, Li Y-X, Liu M, Quan Q-M (2017) Development of fifteen polymorphic microsatellite markers for Ficus virens (Moraceae). Appl Plant Sci 5:1600101

    Article  Google Scholar 

  • Gaikwad A, Hop DV, Mukherjee SK (2002) A 70-kDa chloroplast DNA polymerase from pea (Posum satirum) that shows high processivity and displays moderate fidelity. Mol Genet Genomics 267:45–56

    Article  CAS  PubMed  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou XL, Yang DR, Cao YQ, Liu Q, Peng YQ (2011) Optimization and application of ISSR reaction system in Ficus tikoua. J Yunnan Univ 33(S1):310–316 (Chinese with English abstract)

    Google Scholar 

  • Huang H, Shi C, Liu Y, Mao SY, Gao LZ (2014) Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14:151. https://doi.org/10.1186/1471-2148-14-151

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, de Pamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S, Peery R, McNeal JR, Kuehl J, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZY, Li SY, Li WJ, Guo JM, Tian K, Hu QF, Huang XZ (2013) Phenolic glycosides from Ficus tikoua and their cytotoxic activities. Carbohyd Res 382:19–24

    Article  CAS  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046–1047

    Article  CAS  PubMed  Google Scholar 

  • Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE (2010) Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA 107:4623–4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell W, Morgante M, Andre C, Mcnicol JW, Machray GC, Doyle JJ, Tingey SV, Rafalski JA (1995) Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Curr Biol 5:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Wang S, Xia EH, Jiang JJ, Zeng FC, Gao LZ (2016) Full transcription of the chloroplast genome in photosynthetic eukaryotes. Sci Rep 6:30135. https://doi.org/10.1038/srep30135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Deng J-Y, Fu R-H, Chen Y (2016) Isolation and characterization of thirteen polymorphic microsatellite loci for the fig wasp, Ceratosolen sp. (Hymenoptera: Agaonidae). Jpn Soc Appl Entomol Zool 51:317–320

    Article  CAS  Google Scholar 

  • Wei SP, Lu LN, Ji ZQ, Zhang JW, Wu WJ (2012) Chemical constituents from Ficus tikoua. Chem Nat Compd 48(3):484–485

    Article  CAS  Google Scholar 

  • Wu Z, Gu C, Tembrock LR, Zhang D, Ge S (2017) Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species. PLoS ONE 12(5):e0177553. https://doi.org/10.1371/journal.pone.0177553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    Article  CAS  PubMed  Google Scholar 

  • Zhang WP, Zhang XP, Liu N, Rao GX (2016) A review on ethnic medicine Ficus tikoua Bur. Mod China Med 18(4):531–534

    Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (No. 30971794), the Science and Technology Foundation of Guizhou Province, China (No. QKHJC[2017]1004), the Training Program for High-level Innovative Talents of Guizhou Province (No. QKHRC[2016]4020), the Program for First-class Discipline Construction in Guizhou Province (No. QJKYF[2017]85), the National Innovation Training Program for Undergraduate (Nos. 2018109760007 and 2018109 760008), the Innovative Training Program for Undergraduate in Guizhou Province (Nos. 2018520777, 2018520778, 2018520831, 20195200341, 20195201373 and 2018520861), educational incubation program of Guiyang university (GYU-KJT[2019]-06, GYU-KJT[2019]-07, Foundation of Guiyang science and technology bureau (GYU-KYZ[2019-2020]PT13-02) and the Project for Major Research by Innovation Group in Guizhou Education Department(No. QJHKY[2018]027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyue Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (DOC 963 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shi, D., Bai, Y. et al. High-throughput sequencing uncover Ficus tikoua Bur. chloroplast genome. J. Plant Biochem. Biotechnol. 29, 171–182 (2020). https://doi.org/10.1007/s13562-019-00537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-019-00537-9

Keywords

Navigation