Skip to main content

Advertisement

Log in

Seismic attributes for characterizing gas hydrates: a study from the Mahanadi offshore, India

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Seismic attributes have become successful in illuminating subsurface features and are widely used for identifying hydrocarbon reservoirs. The present work delivers case study carried out in the Mahanadi offshore basin lying in the eastern margin of India to delineate gas hydrates bearing zones using high resolution 2D seismic data. The presence of gas hydrates is identified by a bottom simulating reflector (BSR) on seismic section based on its characteristic features. Seismic attributes are computed to ascertain whether the BSR is related to gas hydrates. The data is conditioned using several post-stack processing steps such as detailed and background steering. The conditioning begins by steering of seismic data, which stores dip and azimuth information at every sample location. The Original seismic data is then filtered using a statistical filter to generate the dip-steered median filter data for extracting the instantaneous amplitude, instantaneous phase, instantaneous frequency, RMS amplitude and sweetness attributes. These are then used in demarcating the zones of gas hydrates or free gas occurrences. The low amplitude, high frequency and low sweetness attributes characterize the presence of gas hydrates. Whereas, free gas zones are characterized by bright amplitudes associated with low frequency and high sweetness below the BSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anstey N (2005) Attributes in color: the early years. Can Soc Explor Geophys Rec 30:12–15

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(01):54–62

    Article  Google Scholar 

  • Arps JJ (1953) The effect of temperature on the density and electrical resistivity of sodium chloride solutions. J Petrol Technol 5(10):17–20

    Article  Google Scholar 

  • Barnes AE (2003) Shaded relief seismic attribute. Geophysics 68(4):1281–1285

    Article  Google Scholar 

  • Bastia R (2006) An overview of Indian sedimentary basins with a special focus on emerging east coast deepwater frontiers. Lead Edge 25(7):818–829

    Article  Google Scholar 

  • Bastia R, Radhakrishna M, Srinivas T, Nayak S, Nathaniel DM, Biswal TK (2010) Structural and tectonic interpretation of geophysical data along the Eastern Continental Margin of India with special reference to the deep water petroliferous basins. J Asian Earth Sci 39(6):608–619

    Article  Google Scholar 

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215

    Article  Google Scholar 

  • Chopra S, Marfurt KJ (2007). Seismic attributes for prospect identification and reservoir characterization. Society of Exploration Geophysicists and European Association of Geoscientists and Engineers, Tulsa

    Book  Google Scholar 

  • Collett TS, Ladd J (2000) Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturation) and gas volumes on the Blake Ridge with electrical resistivity log data. In Proceedings of the Ocean Drilling Program. Scientific Results, pp. 179–191

  • Collett TS, Riedel M, Cochran JR, Boswell R, Presley J, Kumar P, … NGHP, E. (1) Scientists (2008) National gas hydrate program expedition 01 initial reports. Directorate General of Hydrocarbons, New Delhi

    Google Scholar 

  • Collett TS, Boswell R, Cochran JR, Kumar P, Lall M, Mazumdar A, Ramana MV, Ramprasad T, Riedel M, Sain K, Sathe AV, Vishwanath K, Yadav US, the NGHP Expedition 01 Scientific Party (2014). Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01. Mar Petrol Geol 58:3–28

    Article  Google Scholar 

  • Dangwal V, Sengupta S, Desai AG (2008). Speculated petroleum systems in deep offshore Mahanadi Basin in the Bay of Bengal, India. In International Conference & Exposition on Petroleum Geophysics, Hyderabad, pp. 1–7

  • de Groot P, Huck A, de Bruin G, Hemstra N, Bedford J (2010) The horizon cube: a step change in seismic interpretation! Lead Edge 29(9):1048–1055

    Article  Google Scholar 

  • Dewangan P, Mandal R, Jaiswal P, Ramprasad T, Sriram G (2014) Estimation of seismic attenuation of gas hydrate-bearing sediments from multichannel seismic data: a case study from Krishna–Godavari offshore basin. Mar Petrol Geol 58:356–367

    Article  Google Scholar 

  • Farfour M, Yoon WJ, Kim J (2015) Seismic attributes and acoustic impedance inversion in the interpretation of complex hydrocarbon reservoirs. J Appl Geophys 114:68–80

    Article  Google Scholar 

  • Finley P, Krason J (1986). Geological evolution and analysis of confirmed or suspected gas hydrate localities: basin analysis, formation, and stability of gas hydrates in the middle America Trench. US Department of Energy. US Dep. Energy, New York, pp 1181–1950

    Google Scholar 

  • Fuloria RC (1993). Geology and Hydrocarbon prospect of Mahanadi basin India. In Proc. 2nd Seminar on” Petroliferous Basin in India”, 1993

  • Hart BS (2008) Channel detection in 3-D seismic data using sweetness. AAPG Bull 92(6):733–742

    Article  Google Scholar 

  • Hato M, Matsuoka T, Inamori T, Saeki T (2006) Detection of methane-hydrate-bearing zones using seismic attributes analysis. Lead Edge 25:607–609

    Article  Google Scholar 

  • He L, Matsubayashi O, Lei X (2006) Methane hydrate accumulation model for the Central Nankai accretionary prism. Mar Geol 227(3):201–214

    Article  Google Scholar 

  • Hien DH, Jang S, Kim Y (2010) Multiple seismic attribute analyses for determination of bottom simulating reflector of gas hydrate seismic data in the Ulleung Basin of Korea. Mar Geophys Res 31(1–2):121–132

    Article  Google Scholar 

  • Holdaway K (2014). Harness oil and gas big data with analytics: optimize exploration and production with data driven models. Wiley, Hoboken

    Book  Google Scholar 

  • Holkrook WS, Hoskins H, Wood WT, Stephen RA, Lizarralde D (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Sci AAAS Wkly Pap Ed 273(5283):1840–1842

    Google Scholar 

  • Jagannathan CR, Ratnam C, Baishya NC, Dasgupta U (1983) Geology of the offshore Mahanadi basin. Petrol Asia J 6(4):101–104

    Google Scholar 

  • Kou WWH, Smith MA, Ahmed A, Kuzela R (2007) Direct seismic indicators of gas hydrates in the Walker Ridge and Green Canyon areas, deepwater Gulf of Mexico. Lead Edge 26(2):152–155

    Article  Google Scholar 

  • Kumar J, Sain K (2017) Application of spectral decomposition for gas hydrate exploration: a study from Mahanadi offshore, India. In 2017 SEG International Exposition and Annual Meeting. Society of Exploration Geophysicists

  • Kumar P, Collett TS, Boswell R, Cochran JR, Lall M, Mazumdar A, Ramana MV, Ramprasad T, Riedel M, Sain K, Sathe AV, Vishwanath K, Yadav US, the NGHP Expedition 01 Scientific Party (2014) Geologic implications of gas hydrates in the Indian offshore: Krishna-Godavari Basin, Mahanadi Basin, Andaman Sea, Kerala-Konkan Basin. J Mar Petrol Geol 58:29–98

    Article  Google Scholar 

  • Lee MW, Collett TS (2009) Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishnae Godavari Basin, India. J Geophys Res. https://doi.org/10.1029/2008JB006237

    Article  Google Scholar 

  • Lee MW, Collett TS, Inks TL (2009). Seismic-attribute analysis for gas-hydrate and free-gas prospects on the North Slope of Alaska. J Geophys Res 99:4715–4734

    Google Scholar 

  • Lu S, McMechan GA (2004) Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas. Geophysics 69(1):164–179

    Article  Google Scholar 

  • MacKay ME, Jarrard RD, Westbrook GK, Hyndman RD (1994) Origin of bottom-simulating reflectors: geophysical evidence from the Cascadia accretionary prism. Geology 22(5):459–462

    Article  Google Scholar 

  • Makogon YF, Holditch SA, Makogon TY (2007) Natural gas-hydrates—a potential energy source for the 21st Century. J Petrol Sci Eng 56(1):14–31

    Article  Google Scholar 

  • Max MD (ed). (2003) Natural gas hydrate in oceanic and permafrost environments (vol 5). Springer, New York

    Google Scholar 

  • Milkov AV (2004) Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci Rev 66(3):183–197

    Article  Google Scholar 

  • Mohapatra P (2006). Sequence stratigraphic approach for identification of hydrocarbon plays in Mahanadi offshore basin. In 6th International Conference & Exposition on Petroleum Geophysics, pp. 672–677

  • Motiee M (1991) Estimate possibility of hydrates. Hydrocarbon Process 70(7):98–99

    Google Scholar 

  • Ojha M, Sain K (2009) Seismic attributes for identifying gas-hydrates and free-gas zones: application to the Makran accretionary prism. Episodes 32(4):264–270

    Article  Google Scholar 

  • Orange DL, Yun J, Maher N, Barry J, Greene G (2002) Tracking California seafloor seeps with bathymetry, backscatter, and ROVs. Cont Shelf Res 22(16):2273–2290

    Article  Google Scholar 

  • Paull CK, Dillon WP (2001). Natural gas hydrates: occurrence, distribution, and detection. American Geophysical Union Geophysical Monograph Series, Washington, DC, p 124

    Book  Google Scholar 

  • Petersen CJ, Papenberg C, Klaeschen D (2007) Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge. Earth Planet Sci Lett 255(3):414–431

    Article  Google Scholar 

  • Prakash A, Samanta BG, Singh NP (2010) A seismic study to investigate the prospect of gas hydrate in Mahanadi deep water basin, the northeastern continental margin of India. Mar Geophys Res 31(4):253–262

    Article  Google Scholar 

  • Riedel M, Collett TS, Kumar P, Sathe AV, Cook A (2010) Seismic imaging of a fractured gas hydrate system in the Krishna–Godavari Basin offshore India. Mar Petrol Geol 27(7):1476–1493

    Article  Google Scholar 

  • Riedel M, Collett TS, Shankar U (2011) Documenting channel features associated with gas hydrates in the Krishna–Godavari Basin, offshore India. Mar Geol 279(1):1–11

    Article  Google Scholar 

  • Rijks EJH, Jauffred JCEM. (1991) Attribute extraction: an important application in any detailed 3-D interpretation study. Lead Edge 10(9):11–19

    Article  Google Scholar 

  • Roberts A (2001) Curvature attributes and their application to 3 D interpreted horizons. First Break 19(2):85–100

    Article  Google Scholar 

  • Sain K (2017) A possible future energy resource. Ed J Geol Soc India 89:359–362

    Article  Google Scholar 

  • Sain K, Gupta H (2012) Gas hydrates in India: potential and development. Gondwana Res 22(2):645–657

    Article  Google Scholar 

  • Sain K, Singh AK (2011) Seismic quality factors across a bottom simulating reflector in the Makran Accretionary Prism, Arabian Sea. Mar Petrol Geol 28(10):1838–1843

    Article  Google Scholar 

  • Sain K, Minshull TA, Singh SC, Hobbs RW (2000) Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism. Mar Geol 164(1):3–12

    Article  Google Scholar 

  • Sain K, Singh AK, Thakur NK, Khanna R (2009) Seismic quality factor observations for gas-hydrate-bearing sediments on the western margin of India. Mar Geophys Res 30(3):137

    Article  Google Scholar 

  • Sain K, Rajesh V, Satyavani N, Subbarao KV, Subrahmanyam C (2011) Gas-hydrate stability thickness map along the Indian continental margin. Mar Petrol Geol 28(10):1779–1786

    Article  Google Scholar 

  • Sain K, Ojha M, Satyavani N, Ramadass GA, Ramprasad T, Das SK, Gupta H (2012) Gas-hydrates in Krishna-Godavari and Mahanadi basins: new data. J Geol Soc India 79(6):553–556

    Article  Google Scholar 

  • Sain K, Rafique M, Singh S, Gupta H (2015) A report of 9th international methane Hydrates R&D workshop “Science & technology of gas hydrates: when can they be produced efficiently and safely. J Indian Geophys Union 2015:353–361

    Google Scholar 

  • Sastri VV, Venkatachala BS, Narayanan V (1981) The evolution of the east coast of India. Palaeogeogr Palaeoclimatol Palaeoecol 36(1–2):23–54

    Article  Google Scholar 

  • Satyavani N, Sain K (2015) Seismic insights into bottom simulating reflection (BSR) in the Krishna-Godavari basin, Eastern Margin of India. Mar Georesour Geotechnol 33(3):191–201

    Article  Google Scholar 

  • Satyavani N, Thakur NK, Kumar NA, Reddi SI (2005) Migration of methane at the diapiric structure of the western continental margin of India—insights from seismic data. Mar Geol 219(1):19–25

    Article  Google Scholar 

  • Satyavani N, Sain K, Lall M, Kumar BJP (2008) Seismic attribute study for gas hydrates in the Andaman Offshore India. Mar Geophys Res 29(3):167–175

    Article  Google Scholar 

  • Satyavani N, Sain K, Nara D (2017) Seismic vis-a-vis sonic attenuation in gas hydrate bearing sediments of Krishna-Godavari basin, Eastern Margin of India. Geophys J Int 209(2):1195–1203

    Article  Google Scholar 

  • Shankar U, Riedel M (2013) Heat flow and gas hydrate saturation estimates from Andaman Sea, India. Mar Petrol Geol 43:434–449

    Article  Google Scholar 

  • Shankar U, Riedel M (2014) Assessment of gas hydrate saturation in marine sediments from resistivity and compressional-wave velocity log measurements in the Mahanadi Basin, India. Mar Petrol Geol 58:265–277

    Article  Google Scholar 

  • Shankar U, Sain K (2015) Seismic attributes for characterization of gas hydrate and free gas in the Mahanadi Basin. In 2015 Biennial International Conference & Exposition, Society of Petroleum Geophysicists

  • Shankar U, Gupta DK, Bhowmick D, Sain K (2013) Gas hydrate and free gas saturations using rock physics modelling at site NGHP-01-05 and 07 in the Krishna-Godavari Basin, eastern Indian margin. J Pet Sci Eng 106:62–70

    Article  Google Scholar 

  • Singh D, Kumar PC, Sain K (2016) Interpretation of gas chimney from seismic data using artificial neural network: a study from the Maari 3D prospect of Taranaki basin, New Zealand. J Nat Gas Sci Eng 36:339–357

    Article  Google Scholar 

  • Sloan ED Jr (2003) Fundamental principles and applications of natural gas hydrates. Nature 426(6964):353

    Article  Google Scholar 

  • Subrahmanyam D, Rao PH (2008). Seismic attributes—a review. In 7th International Conference and Exposition on Petroleum Geophysics, Hyderabad

  • Subramanian V (1978). Input by Indian rivers into the world oceans. Proc Indian Acad Sci A 87(7):77–88

  • Sun Y, Wu S, Dong D, Lüdmann T, Gong Y (2012) Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea. Mar Geol 311:32–40

    Article  Google Scholar 

  • Taner MT (2001) Seismic attributes. CSEG Rec 26(7):48–56

    Google Scholar 

  • Taner MT, Koehler F, Sheriff RE (1979) Complex seismic trace analysis. Geophysics 44(6):1041–1063

    Article  Google Scholar 

  • Taylor MH, Dillon WP, Pecher IA (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164(1):79–89

    Article  Google Scholar 

  • Tingdahl KM (1999) Improving seismic detectability using intrinsic directionality. University of Gothenburg, Gothenburg

    Google Scholar 

  • Tingdahl KM, de Groot PF (2003) Post-stack dip-and azimuth processing. J Seismic Explor 12(2):113–126

    Google Scholar 

  • Westbrook GK, Carson B, Musgrave RJ (1994). Initial Reports Part 1: Cascadia Margin. In Proceedings of the ODP, Initial Reports (Vol. 146)

  • Wood WT, Ruppel C (2000). Seismic and thermal investigations of the blake ridge gas hydrate area: a synthesis 1. In Proceedings of the Ocean Drilling Program. Scientific results, pp. 253–264). Ocean Drilling Program

Download references

Acknowledgements

The Director is thanked for permission and the dGB Earth Sciences™ is acknowledged for providing an academic license of the OpendTect™ v.5.0.11 to pursue the attribute studies. Thanks are due to Mr. Chinmoy Kumar for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalachand Sain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J., Sain, K. & Arun, K.P. Seismic attributes for characterizing gas hydrates: a study from the Mahanadi offshore, India. Mar Geophys Res 40, 73–86 (2019). https://doi.org/10.1007/s11001-018-9357-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-018-9357-4

Keywords

Navigation