Skip to main content
Log in

C2H2-like zinc finger protein 1 causes pollen and pistil malformation through the auxin pathway

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The fertilization of flowering plants is a critical event in their reproduction. ZnF1, a C2H2-like zinc finger protein, is highly expressed in the reproductive organs during Brassica oleracea self-pollination. However, BoZnF1’s functions during these biological processes have not been well characterized. Genetically modified mutants were employed to investigate the potential roles of ZnF1 in Arabidopsis fertilization. A Promoter expression analysis indicated that BoZnF1 is primarily expressed in root and reproductive organs, especially in filaments and pistils. When transformed into Arabidopsis protoplasts, the green fluorescent protein–BoZnF1 fusion fluoresced in the nuclei. A T-DNA insert (znf1) in Arabidopsis disrupted inflorescence development, including elongation of the gynophore and papilla cells on the stigma and the failure of anther sac cracking, resulting in defective pollen morphology. By hybrid pollination between wild-type and znf1, we found that wild-type pollen grains grew slowly on the znf1 stigma, leading to a reduced seed-setting rate. In addition, in vivo yeast two-hybrid screening and co-immunoprecipitation were performed to identify the binding protein of ZnF1. A TEOSINTE BRANCHED 1-CYCLOIDEA-PCF family transcription factor, BoTCP4, was identified as a ZnF1-interacting partner. We found that znf1 plays a role in the auxin pathway. When znf1 plants were treated with N-1-naphthylphthalamic acid, an auxin-transport inhibitor, the defects were exacerbated, leading to the ectopic formation of the gynophore in the ovarian tissue. Thus, ZnF1 may play a negative regulatory role and influence reproduction through the auxin pathway in Brassica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Balanza V, Navarrete M, Trigueros M, Ferrandiz C (2006) Patterning the female side of Arabidopsis: the importance of hormones. J Exp Bot 57:3457–3469

    PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39

    PubMed  CAS  Google Scholar 

  • Bosco CD, Dovzhenko A, Liu X, Woerner N, Rensch T, Eismann M, Heberle-Bors E (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71:860–870

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134:202–215

    PubMed  CAS  Google Scholar 

  • Chen GH, Sun JY, Liu M, Liu J, Yang WC (2014) SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis. J Genet Genomics 41:617–625

    PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Gene Dev 20:1790–1799

    PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2008) NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. P Natl Acad Sci USA 105:21017–21022

    CAS  Google Scholar 

  • Cui X, Guo Z, Song L, Wang Y, Cheng Y (2016) NCP1/AtMOB1A plays key roles in auxin-mediated Arabidopsis development. Plos Genet 12:e1005923

    PubMed  PubMed Central  Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S, Zhao Y (2013) The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288:1448–1457

    PubMed  CAS  Google Scholar 

  • Davies PJ (2013) Plant hormones: physiology, biochemistry and molecular biology. Springer, New York

    Google Scholar 

  • Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, Skupa P (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat commun 3:941

    PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147

    PubMed  CAS  Google Scholar 

  • Herve C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Tremousaygue D (2009) In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development. Plant physiol 149:1462–1477

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter C, Willmann MR, Wu G, Yoshikawa M, Luz DL, Gutierrez-Nava M, Poethig SR (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981

    PubMed  PubMed Central  CAS  Google Scholar 

  • Iwano M, Ito K, Fujii S, Kakita M, Asano-Shimosato H, Igarashi M, Tanaka M (2015) Calcium signalling mediates self-incompatibility response in the Brassicaceae. Nat plants 1:15128

    PubMed  CAS  Google Scholar 

  • Johnson MA, Preuss D (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev Cell 2:273–281

    PubMed  CAS  Google Scholar 

  • Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J 68:147–158

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Hasegawa PM (2007) yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol 145:722–735

    PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2010) TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22:3574–3588

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kubota A, Ito S, Shim JS, Johnson RS, Song YH, Breton G, Ohme-Takagi M (2017) TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet 13:e1006856

    PubMed  PubMed Central  Google Scholar 

  • Lan X, Yang J, Abhinandan K, Nie Y, Li X, Li Y, Samuel MA (2017) Flavonoids and ROS play opposing roles in mediating pollination in Ornamental Kale (Brassica oleracea var. acephala). Mol Plant 10:1361–1364

    PubMed  CAS  Google Scholar 

  • Larsson E, Franks RG, Sundberg E (2013) Auxin and the Arabidopsis thaliana gynoecium. J Exp Bot 64:2619–2627

    PubMed  CAS  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    PubMed  CAS  Google Scholar 

  • Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Yu X (2017) ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol 59:179–189

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    PubMed  CAS  Google Scholar 

  • Lu K, Li T, He J, Chang W, Zhang R, Liu M, Qu C (2017) qPrimerDB: a thermodynamics-based gene-specific qPCR primer database for 147 organisms. Nucleic Acids Res 46:1229–1236

    Google Scholar 

  • Lucero LE, Uberti-Manassero NG, Arce AL, Colombatti F, Alemano SG, Gonzalez DH (2015) TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis. Plant J 84:267–282

    PubMed  CAS  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE, Feijo JA (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    PubMed  CAS  Google Scholar 

  • Mravec J, Skupa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Dobrev PI (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136

    PubMed  CAS  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Ecker JR (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    PubMed  PubMed Central  CAS  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Onodera C (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed  PubMed Central  CAS  Google Scholar 

  • Palanivelu R, Preuss D (2000) Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends Cell Biol 10:517–524

    PubMed  CAS  Google Scholar 

  • Ray SM, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, uhlemeier KC (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255

    PubMed  CAS  Google Scholar 

  • Sawchuk MG, Edgar A, Scarpella E (2013) Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet 9:e1003294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A (2015) The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot 66:2869–2876

    PubMed  CAS  Google Scholar 

  • Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 121:1519–1532

    PubMed  CAS  Google Scholar 

  • Sessions A (1999) Piecing together the Arabidopsis gynoecium. Trend Plant Sci 4:296–297

    CAS  Google Scholar 

  • Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J 47:112–123

    PubMed  CAS  Google Scholar 

  • Takato S, Kakei Y, Mitsui M, Ishida Y, Suzuki M, Yamazaki C, Shimada Y (2017) Auxin signaling through SCFTIR1/AFBs mediates feedback regulation of IAA biosynthesis. Biosci Biotechnol Biochem 81:1320–1326

    PubMed  CAS  Google Scholar 

  • Takeda T, Amano K, Ohto MA, Nakamura K, Sato S, Kato T, Ueguchi C (2006) RNA interference of the Arabidopsis putative transcription factor TCP16 gene results in abortion of early pollen development. Plant Mol Biol 61:165–177

    PubMed  CAS  Google Scholar 

  • Tantikanjana T, Nasrallah JB (2012) Non-cell-autonomous regulation of crucifer self-incompatibility by auxin response factor ARF3. Proc Natl Acad Sci USA 109:19468–19473

    PubMed  CAS  Google Scholar 

  • Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH (2011) The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. J Exp Bot 63:809–823

    PubMed  Google Scholar 

  • Wang Y, Loake G, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front Plant Sci 4:314

    PubMed  PubMed Central  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat protoc 2:1565

    PubMed  CAS  Google Scholar 

  • Zazimalova E, Petrasek J, Benkova E (2014) Auxin and its role in plant development. Springer, Heidelberg

    Google Scholar 

  • Zeng J, Gao Q, Shi S, Lian X, Converse R, Zhang H, Zhu L (2017) Dissecting pistil responses to incompatible and compatible pollen in self-incompatibility Brassica oleracea using comparative proteomics. Protein J 36:123–137

    PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    PubMed  CAS  Google Scholar 

  • Zuniga VM, Reyes JI, Marsch N, Folter S (2014) Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Front Plant Sci 5:191

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 31572127), a special foundation of central institution basic research (Grant No. XDJK2017C032).

Author information

Authors and Affiliations

Authors

Contributions

XPL, HCZ and LQZ designed the experiments. XPL, HCZ, QYL and THZ performed the experiments. XPL, ZJ and XJB analyzed the data. YKW, QYL, YZZ and THZ contributed analyses tools. XPL and HCZ wrote the manuscript. XPL, LQZ and RLC revised the manuscript. All the authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Liquan Zhu.

Ethics declarations

Conflict of interest

We declare that we have no competing interests as defined by Plant Growth Regulation, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 3962 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Zhang, H., Zeng, J. et al. C2H2-like zinc finger protein 1 causes pollen and pistil malformation through the auxin pathway. Plant Growth Regul 90, 505–518 (2020). https://doi.org/10.1007/s10725-019-00568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00568-1

Keywords

Navigation