Skip to main content
Log in

Utilizing an In Situ Reduction in the Synthesis of BaMoOF5

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new molybdenum containing oxyfluoride, BaMoOF5, space group Cmcm with lattice parameters of a = 7.1445(3), b = 6.7894(3), c = 10.1969(4), was synthesized via a mild hydrothermal crystal growth method. The synthesis resulted in high-quality single crystals of the title material, which were characterized by single-crystal X-ray diffraction. The structure is discussed in detail.

Graphical Abstract

A new Mo(V) oxyfluoride, BaMoOF5, was synthesized via a mild hydrothermal route that included an in-situ reduction step to reduce molybdenum from a starting oxidation state of 6+ to 5+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boivin E, Masquelier C, Croguennec L, Chotard JN (2017) Crystal structure and lithium diffusion pathways of a potential positive electrode material for lithium-ion batteries: Li2VIII(H0.5PO4)2. Inorg Chem 56:6776–6779

    Article  CAS  PubMed  Google Scholar 

  2. Fulle K, Sanjeewa LD, McMillen CD, Wen Y, Rajamanthrilage AC, Anker JN, Chumanov G, Kolis JW (2017) One-pot hydrothermal synthesis of TbIII13(GeO4)6O7(OH) and K2TbIVGe2O7: preparation of a stable terbium(4+) complex. Inorg Chem 56:6044–6047

    Article  CAS  PubMed  Google Scholar 

  3. Hamchaoui F, Alonzo V, Marlart I, Auguste S, Galven C, Rebbah H, Le Fur E (2017) Hydrothermal synthesis, structural and thermal characterizations of three open-framework gallium phosphites. J Solid State Chem 255:8–12

    Article  CAS  Google Scholar 

  4. Shen C, Mei D, Sun C, Liu Y, Wu Y (2017) Hydrothermal synthesis and crystal structures of NaBe(SeO)·H2O and Cs[Mg(H2O)](SeO). Z Anorg Allg Chem 643:1082–1087

    Article  CAS  Google Scholar 

  5. Zaitseva NA, Krasnenko TI, Onufrieva TA, Samigullina RF (2017) Hydrothermal synthesis and microstructure of α-Zn2SiO4:V crystal phosphor. Russ J Inorg Chem 62:168–171

    Article  CAS  Google Scholar 

  6. Cui M, He Z, Tang Y, Qiu C (2017) Crystal growth and magnetic properties of a kagomé compound Cs2NaMn3F12. J Cryst Growth 475:256–260

    Article  CAS  Google Scholar 

  7. He L, Yuan H, Huang K, Yan C, Li G, He Q, Yu Y, Feng S (2009) Hydrothermal syntheses, structures, and magnetic properties of (NH4)2NaVF6 and Na3VF6. J Solid State Chem 182:2208–2212

    Article  CAS  Google Scholar 

  8. Jo V, Woo Lee D, Koo HJ, Ok KM (2011) A2TiF5·nH2O (A = K, Rb, or Cs; n = 0 or 1): synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides. J Solid State Chem 184:741–746

    Article  CAS  Google Scholar 

  9. Liu L, Yang Y, Dong X, Zhang B, Wang Y, Yang Z, Pan S (2016) Design and syntheses of three novel carbonate halides: Cs3Pb2(CO3)3I, KBa2(CO3)2F, and RbBa2(CO3)2F. Chem Eur J 22:2944–2954

    Article  CAS  PubMed  Google Scholar 

  10. Yeon J, zur Loye HC (2017) Hydrothermal synthesis and crystal structure of hexafluorogallate, Na3GaF6. J Chem Crystallogr 47:129–132

    Article  CAS  Google Scholar 

  11. Ay B, Yildiz E, Felts AC, Abboud KA (2016) Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework. J Solid State Chem 244:61–68

    Article  CAS  Google Scholar 

  12. Hmida F, Ayed B, Haddad A (2017) Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials based on polyoxotungstate clusters: Na(C5H7N2O)4 [HP2W18O62].10.33H2O and (C6H8NO)4[H2P2W18O62]·6H2O. J Mol Struct 1150:566–573

    Article  CAS  Google Scholar 

  13. Marinho MV, Reis DO, Oliveira WX, Marques LF, Stumpf HO, Déniz M, Pasán J, Ruiz-Pérez C, Cano J, Lloret F, Julve M (2017) Photoluminescent and slow magnetic relaxation studies on lanthanide(III)-2,5-pyrazinedicarboxylate frameworks. Inorg Chem 56:2108–2123

    Article  CAS  PubMed  Google Scholar 

  14. Xie YC, Cheng QR, Pan ZQ (2018) Hydrothermal synthesis and crystal structure of alkaline earth metal (Mg, Ca) based on 2,5-dimethylbenzene-1,4-diylbis(methylene) diphosphonic acid. J Mol Struct 1154:232–238

    Article  CAS  Google Scholar 

  15. Zhao EX, Li FF, Shi ZZ, Zhang R,H, Zhao D (2017) A new zinc complex based on 5-bromoisophthalic acid and 1,2-bis(imidazole-1-yl)ethane: hydrothermal synthesis, crystal structure, and properties. Inorg Nano Met Chem 47:1175–1178

    Article  CAS  Google Scholar 

  16. Łyszczek R, Głuchowska H, Cristóvão B, Tarasiuk B (2016) New lanthanide biphenyl-4,4′-diacetates—hydrothermal synthesis, spectroscopic, magnetic and thermal investigations. Thermochim Acta 645:16–23

    Article  CAS  Google Scholar 

  17. Lin ZJ, Zheng HQ, Zheng HY, Lin LP, Xin Q, Cao R (2017) Efficient capture and effective sensing of Cr2O7 2– from water using a zirconium metal-organic framework. Inorg Chem 56:14178–14188

    Article  CAS  PubMed  Google Scholar 

  18. Lu BB, Yang J, Liu YY, Ma JF (2017) A polyoxovanadate-resorcin[4]arene-based porous metal-organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg Chem 56:11710–11720

    Article  CAS  PubMed  Google Scholar 

  19. Park HJ, Jang JK, Kim SY, Ha JW, Moon D, Kang IN, Bae YS, Kim S, Hwang DH (2017) Synthesis of a Zr-based metal-organic framework with Spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg Chem 56:12098–12101

    Article  CAS  PubMed  Google Scholar 

  20. Thao Tran T, Halasyamani SP (2014) Synthesis and characterization of ASnF3 (A = Na+, K+, Rb+, Cs+). J Solid State Chem 210:213–218

    Article  CAS  Google Scholar 

  21. Abeysinghe D, Smith MD, Yeon J, Morrison G, zur Loye HC (2014) Observation of multiple crystal-to-crystal transitions in a new reduced vanadium oxalate hybrid material, Ba [Ba3(VO)2(C2O4)5(H2O)6](H2O)3, prepared via a mild, two-step hydrothermal method. Cryst Growth Des 14:4749–4758

    Article  CAS  Google Scholar 

  22. Felder JB, Yeon J, Smith MD, zur Loye HC (2016) Compositional and structural versatility in an unusual family of anti-perovskite fluorides: [Cu(H2O)4]3[(MF6)(M’F6)]. Inorg Chem 55:7167–7175

    Article  CAS  PubMed  Google Scholar 

  23. Yeon J, Smith MD, Tapp J, Möller A, zur Loye HC (2014) Application of a mild hydrothermal approach containing an in situ reduction step to the growth of single crystals of the quaternary U(IV)-containing fluorides Na4MU6F30 (M = Mn2+, Co2+, Ni2++, Cu2++, and Zn2+) crystal growth, structures, and magnetic properties. J Am Chem Soc 136:3955–3963

    Article  CAS  PubMed  Google Scholar 

  24. Mann JM, McMillen CD, Kolis JW (2015) Crystal chemistry of alkali thorium silicates under hydrothermal conditions. Cryst Growth Des 15:2643–2651

    Article  CAS  Google Scholar 

  25. McMillen CD, Kolis JW (2008) Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3. J Cryst Growth 310:1939–1942

    Article  CAS  Google Scholar 

  26. Underwood CC, McMillen CD, Kolis JW (2014) Hydrothermal synthesis and crystal chemistry of novel fluorides with A7B6F31 (A = Na, K, NH4, Tl; B = Ce, Th) compositions. J Chem Crystallogr 44:493–500

    Article  CAS  Google Scholar 

  27. Page B (2011) Immobilising radioactive waste. Mater World 19:28

    CAS  Google Scholar 

  28. Prado MO, Messi NB, Plivelic TS, Torriani IL, Bevilacqua AM, Arribere MA (2001) The effects of radiation on the density of an aluminoborate glass. J Non-Cryst Solids 289:175

    Article  CAS  Google Scholar 

  29. Schweiger MJ, Hrma P, Humrickhouse CJ, Marcial J, Riley BJ, TeGrotenhuis NE (2010) Cluster formation of silica particles in glass batches during melting. J Non-Cryst Solids 356:1359–1367

    Article  CAS  Google Scholar 

  30. Xu K, Hrma P, Rice JA, Schweiger MJ, Riley BJ, Overman NR, Kruger AA (2016) Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests. J Am Ceram Soc 99:2964–2970

    Article  CAS  Google Scholar 

  31. Short RJ, Hand RJ, Hyatt NC, Möbus G (2005) Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions. J Nucl Mater 340:179–186

    Article  CAS  Google Scholar 

  32. Hand RJ, Short RJ, Morgan S, Hyatt NC, Mobus G, Lee WE (2005) Molybdenum in glasses containing vitrified nuclear waste. Glass Technol 46:121

    CAS  Google Scholar 

  33. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2008) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Cryst 48:3–10

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122

    Article  CAS  Google Scholar 

  35. Hubschle CB, Sheldrick GM, Bittrich B (1987) ShelXle: a Qt graphical user interface for SHELXL. J Appl Cryst 20:139

    Article  Google Scholar 

  36. Gelato LM, Parthe E (1987) STRUCTURE TIDY—a computer program to standardize crystal structure data. J Appl Cryst 20:139

    Article  Google Scholar 

  37. Parthe E (2004) Inorganic crystal structure data to be presented in a form more useful for further studies. Chin J Struct Chem 23:1150

    Google Scholar 

  38. Parthe E, Gelato LM (1984) The standardization of inorganic crystal-structure data. Acta Cryst A 40:169

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Award number DE-SC0018739 funded this work.

Funding

The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Conrad zur Loye.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10870_2018_767_MOESM1_ESM.pdf

Supplemental Information: The CIF for the reported composition has been deposited in both the ICSD: Number Pending and the CCDC: 1588566. (PDF 82 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felder, J.B., Smith, M.D. & zur Loye, HC. Utilizing an In Situ Reduction in the Synthesis of BaMoOF5. J Chem Crystallogr 49, 52–57 (2019). https://doi.org/10.1007/s10870-018-00767-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-00767-0

Keywords

Navigation