Skip to main content
Log in

Horizontal fragmentation for fuzzy querying databases

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Fuzzy querying is one of the main research topics of database investigators. Several research works to date focused on building fuzzy data models, fuzzy query languages, and fuzzy database systems. However, such systems turn out to be less efficient when it comes to querying very large data. Therefore, improving the performance of such database systems is an important research issue. In this paper, we address this issue by proposing a complete fragmentation methodology. Especially, we propose an horizontal fragmentation algorithm as well as different query execution strategies whose aim is minimizing the number of fragment accesses. Extensive experimental evaluation demonstrates the efficiency of our framework scaling up to millions of tuples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://github.com/postgresqlf/PostgreSQL_f.

  2. https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes.

  3. The results of the other frequent and non-frequent queries follow similar trends as the reported ones.

References

  1. Abdalla, H.I., Amer, A.A.: Dynamic horizontal fragmentation, replication and allocation model in ddbss. In: 2012 International Conference on Information Technology and e-Services (ICITeS), pp. 1–7. IEEE (2012)

  2. Aguilera, A., Cadenas, J.T., Tineo, L.: Fuzzy querying capability at core of a rdbms. In: Yan, L. (ed.) Advanced Database Query Systems: Techniques, Applications and Technologies, pp. 160–184. IGI Global, Hershey (2011)

    Chapter  Google Scholar 

  3. Baião, F., Mattoso, M.: A mixed fragmentation algorithm for distributed object oriented databases. In: Proceedings of International Conference on Computing and Information (ICCI’98), Winnipeg, pp. 141–148 (1998)

  4. Barbet, A., Guillard, F.: Refonte du prototype d’interrogation floue iSQLF. Rapport de projet, laboratoire lannionais d’informatique, ENSSAT LANNION (2007)

  5. Barr, M., Bellatreche, L.: Approche dirigée par les fourmis pour la fragmentation horizontale dans les entrepôts de données relationnels. Revue 6, 17 (2012)

    Google Scholar 

  6. Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal class partitioning in object-oriented databases. In: Database and Expert Systems Applications, pp. 58–67. Springer (1997)

  7. Bernatowicz, D., Bernatowicz, A.: Application of correlation in the vertical fragmentation based on statistic of queries. Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej pp. 77–87 (2014)

  8. Bosc, P., Pivert, O.: Fuzzy queries and relational databases. In: Proceedings of the 1994 ACM symposium on Applied computing, pp. 170–174. ACM (1994)

  9. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995)

    Article  Google Scholar 

  10. Bouchon-Meunier, B.: La logique floue: Que sais-je ? n\(\circ \) 2702. Presses universitaires de France (2007)

  11. Boukraâ, D., Boussaïd, O., Bentayeb, F.: Vertical fragmentation of xml data warehouses using frequent path sets. In: International Conference on Data Warehousing and Knowledge Discovery, pp. 196–207. Springer (2011)

  12. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design. In: Proceedings of the 1982 ACM SIGMOD international conference on Management of data, pp. 128–136. ACM (1982)

  13. Darabant, A.S., Darabant, L.: Clustering methods in data fragmentation. Rom. J. Inf. Sci. Technol. 14(1), 81–97 (2011)

    MATH  Google Scholar 

  14. Darabant, A., Câmpan, A., Moldovan, G., Grebla, H.: Ai clustering techniques: a new approach in horizontal fragmentation of classes with complex attributes and methods in object oriented databases. In: The Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics-ICTAMI, pp. 109–128 (2004)

  15. Du, J., Barker, K., Alhajj, R.: Attraction-a global affinity measure for database vertical partitioning. In: ICWI, pp. 538–548 (2003)

  16. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: Why and how? In: Andreasen, T. (ed.) Flexible Query Answering Systems, pp. 45–60. Springer, Berlin (1997)

    Chapter  Google Scholar 

  17. Elhoussaine, Z., Aboutajdine, D., El Qadi, A.: Complete algorithm for fragmentation in data warehouse. Age 1(2), 1 (2008)

    Google Scholar 

  18. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for fuzzy sql queries. In: International Conference on Flexible Query Answering Systems, pp. 164–174. Springer (1998)

  19. Goncalves, M., Tineo, L.: Sqlf flexible querying language extension by means of the norm sql2. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 473–476. IEEE (2001)

  20. Goncalves, M., Tineo, L.: Sqlf3: An extension of sqlf with sql3 features. In: The 10th IEEE International Conference on Fuzzy Systems, vol. 1, pp. 477–480. IEEE (2001)

  21. Goncalves, M., Tineo, L.: Sqlfi y sus aplicaciones. Rev. Av. Sist. Inf. 5(2), 33–40 (2008)

    Google Scholar 

  22. González, E., Rodríguez, R., Tineo, L.: Prototipo experimental para consultas difusas (2012)

  23. Hoffer, J.A., Severance, D.G.: The use of cluster analysis in physical data base design. In: Proceedings of the 1st International Conference on Very Large Data Bases, pp. 69–86. ACM (1975)

  24. HyunSon, J., HoKim, M.: \(\alpha \)-partitioning algorithm: Vertical partitioning based on the fuzzy graph. In: Database and Expert Systems Applications, pp. 537–546. Springer (2001)

  25. Karima, T., Abdellatif, A., Ounalli, H.: Data mining based fragmentation technique for distributed data warehouses environment using predicate construction technique. In: 2010 Sixth International Conference on Networked Computing and Advanced Information Management (NCM), pp. 63–68. IEEE (2010)

  26. Kechar, M., Nait-Bahloul, S.: Hybrid fragmentation of xml data warehouse using k-means algorithm. In: East European Conference on Advances in Databases and Information Systems, pp. 70–82. Springer (2014)

  27. Lee, D., Kim, M.H., Lee-Kwang, H., Lee, Y.J.: A fuzzification of the relational data model. In: DASFAA, pp. 360–367 (1993)

  28. Mahboubi, H., Darmont, J.: Data mining-based fragmentation of xml data warehouses. In: Proceedings of the ACM 11th international workshop on Data warehousing and OLAP, pp. 9–16. ACM (2008)

  29. Mala, I., Akhtar, P., Zia, S.S., Mirza, S.H.: Application of fuzzy relational databases in medical informatics. In: 2011 IEEE 14th International on Multitopic Conference (INMIC), pp. 41–44. IEEE (2011)

  30. Mala, I., Akhtar, P., Rehman Memon, A., Ali, T.: Fdsl tool: an approach of fuzzy relational database management system. Life Sci. J. 10, 1606–1612 (2013)

    Google Scholar 

  31. McCormick Jr., W.T., Schweitzer, P.J., White, T.W.: Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20(5), 993–1009 (1972)

    Article  MATH  Google Scholar 

  32. Medina, J.M., Pons, O., Vila, M.A.: Gefred: a generalized model of fuzzy relational databases. Inf. Sci. 76(1–2), 87–109 (1994)

    Article  Google Scholar 

  33. Medina Rodríguez, J.M., Pons Capote, O., Vila Miranda, M.A., Cubero Talavera, J.C.: Client/server architecture for fuzzy relational databases. Math. Soft Comput. 3(3), 415–424 (1996)

    Google Scholar 

  34. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning algorithms for database design. ACM Trans. Database Syst. (TODS) 9(4), 680–710 (1984)

    Article  Google Scholar 

  35. Navathe, S., Karlapalem, K., Ra, M.: A mixed fragmentation methodology for initial distributed database design. J. Comput. Softw. Eng. 3(4), 395–426 (1995)

    Google Scholar 

  36. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Springer Science & Business Media, New York (2011)

    Google Scholar 

  37. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Inf. Sci. 34(2), 115–143 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ra, M.: Horizontal partitioning for distributed database design: a graph-based approach. In: Australian Database Conference, pp. 101–120 (1993)

  39. Rodríguez, L.J.T.: Extending rdbms for allowing fuzzy quantified queries. In: International Conference on Database and Expert Systems Applications, pp. 407–416. Springer (2000)

  40. Samuel, B.: Interrogation floue de bases de données: extension de iSQLf. Rapport de projet, laboratoire lannionais d’informatique, ENSSAT LANNION (2005)

  41. Škrbić, S., Racković, M.: Pfsql: a fuzzy sql language with priorities. In: Proceedings of the 4th International Conference on Engineering Technologies, Novi Sad, Serbia, pp. 58–63 (2009)

  42. Smits, G., Pivert, O., Girault, T.: Postgresqlf: un système dinterrogation floue. Actes des 28e journées Bases de Données Avancées (BDA12), Session démonstrations (2012)

  43. Smits, G., Pivert, O., Girault, T.: Reqflex: fuzzy queries for everyone. PVLDB 6(12), 1206–1209 (2013)

    Google Scholar 

  44. Tahani, V.: A conceptual framework for fuzzy query processinga step toward very intelligent database systems. Inf. Process. Manag. 13(5), 289–303 (1977)

    Article  MATH  Google Scholar 

  45. Takaci, A., Škrbic, S.: Data model of frdb with different data types and pfsql. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 407–434. IGI Global, Hershey (2008)

    Chapter  Google Scholar 

  46. Umano, M.: Freedom-0: a fuzzy database system. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, pp. 339–347. North-Holland, Amsterdam (1982)

    Google Scholar 

  47. Umano, M., Fukami, S.: Fuzzy relational algebra for possibility-distribution-fuzzy-relational model of fuzzy data. J. Intell. Inf. Syst. 3(1), 7–27 (1994)

    Article  Google Scholar 

  48. Wu, J.: Advances in K-means Clustering: A Data Mining Thinking. Springer Publishing Company, Incorporated, New York (2012)

    Book  MATH  Google Scholar 

  49. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  50. Zhang, Y., Orlowska, M.E.: On fragmentation approaches for distributed database design. Inf. Sci.-Appl. 1(3), 117–132 (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Benouaret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drissi, A., Nait-Bahloul, S., Benouaret, K. et al. Horizontal fragmentation for fuzzy querying databases. Distrib Parallel Databases 37, 441–468 (2019). https://doi.org/10.1007/s10619-018-7250-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-018-7250-4

Keywords

Navigation