Skip to main content
Log in

Enhanced harmony search algorithm with circular region perturbation for global optimization problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

To improve the searching effectiveness of the harmony search (HS) algorithm, an enhanced harmony search algorithm with circular region perturbation (EHS_CRP) is proposed in this paper. In the EHS_CRP algorithm, a global and local dimension selection strategy is designed to accelerate the search speed of the algorithm. A selection learning operator based on the global and local mean level is proposed to improve the balance between exploration and exploitation. Circular region perturbation is employed to avoid the algorithm stagnation and get a better exploration region. To assess performance, the proposed algorithm is compared with 10 state-of-the-art swarm intelligent approaches in a large set of global optimization problems. The simulation results confirm that EHS_CRP has a significant advantage in terms of accuracy, convergence speed, stability and robustness. Moreover, EHS_CRP performs better than other tested methods in engineering design optimization problems. Thus, the EHS_CRP algorithm is a viable and reliable alternative for some difficult and multidimensional real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jang WS, Kang HI, Lee BH. Hybrid simplex-harmony search method for optimization problems. In: IEEE Congress on Evolutionary Computation (CEC 2008) IEEE, Hong Kong, 2008, pp. 4157–4164

  2. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Google Scholar 

  3. Alia O M’d, Mandava R (2011) The variants of the harmony search algorithm: an overview. Artif Intell Rev 36(1):49–68

    Google Scholar 

  4. Manjarres D, Landa-Torres I, Gil-Lopez S et al (2013) A survey on applications of the harmony search algorithm. Eng Appl Artif Intell 26(8):1818–1831

    Google Scholar 

  5. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  6. Omran MGH, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656

    MathSciNet  MATH  Google Scholar 

  7. Zou D, Gao L, Wu J et al (2010) Novel global harmony search algorithm for unconstrained problems. Neurocomputing 73(16):3308–3318

    Google Scholar 

  8. Zou D, Gao L, Li S et al (2010) A novel global harmony search algorithm for task assignment problem. J Syst Softw 83(10):1678–1688

    Google Scholar 

  9. Zou D, Gao L, Li S et al (2011) Solving 0–1 knapsack problem by a novel global harmony search algorithm. Appl Soft Comput 11(2):1556–1564

    Google Scholar 

  10. Zou D, Gao L, Wu J et al (2010) A novel global harmony search algorithm for reliability problems. Comput Ind Eng 58(2):307–316

    Google Scholar 

  11. El-Abd M (2013) An improved global-best harmony search algorithm. Appl Math Comput 222:94–106

    MATH  Google Scholar 

  12. Ouyang H, Gao L, Li S et al (2014) On the iterative convergence of harmony search algorithm and a proposed modification. Appl Math Comput 247:1064–1095

    MathSciNet  MATH  Google Scholar 

  13. Khalili M, Kharrat R, Salahshoor K et al (2014) Global Dynamic Harmony Search algorithm: GDHS. Appl Math Comput 228(1):195–219

    MathSciNet  MATH  Google Scholar 

  14. Das S, Mukhopadhyay A, Roy A et al (2011) Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(1):89–106

    Google Scholar 

  15. Ponz-Tienda JL, Salcedo-Bernal A, Pellicer E et al (2017) Improved Adaptive Harmony Search algorithm for the Resource Leveling Problem with minimal lags. Autom Constr 77:82–92

    Google Scholar 

  16. Morsali R, Ghadimi N, Karimi M et al (2015) Solving a novel multiobjective placement problem of recloser and distributed generation sources in simultaneous mode by improved harmony search algorithm. Complexity 21(1):328–339

    MathSciNet  Google Scholar 

  17. Zhang J, Wu Y, Guo Y et al (2016) A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints. Appl Energy 183:791–804

    Google Scholar 

  18. Landa-Torres I, Manjarres D, Gil-López S, et al. A Novel Grouping Harmony Search Algorithm for Clustering Problems. International Conference on Harmony Search Algorithm. Springer, Singapore, 2017: 78–90

    Google Scholar 

  19. Niknam T, Kavousi-Fard A (2016) Optimal energy management of smart renewable micro-grids in the reconfigurable systems using adaptive harmony search algorithm. International Journal of Bio-Inspired Computation 8(3):184–194

    Google Scholar 

  20. Wang GG, Gandomi AH, Zhao X et al (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285

    Google Scholar 

  21. Zhan ZH, Zhang J, Li Y et al (2009) Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39:1362–1381

    Google Scholar 

  22. Zhu GP, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3173

    MathSciNet  MATH  Google Scholar 

  23. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12:64–79

    Google Scholar 

  24. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Google Scholar 

  25. Ghaemi M, Feizi-Derakhshi MR (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687

    Google Scholar 

  26. Yang XS, Deb S. Cuckoo search via Lévy flights, In: World Congress on IEEE Nature & Biologically Inspired Computing, 2009, pp. 210–214

  27. Wang Y, Guo Z, Wang Y Enhanced harmony search with dual strategies and adaptive parameters. Soft Comput 2017:1–15

  28. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83

    MathSciNet  Google Scholar 

  29. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60

    MathSciNet  MATH  Google Scholar 

  30. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Google Scholar 

  31. He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl Math Comput 186(2):1407–1422

    MathSciNet  MATH  Google Scholar 

  32. Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  33. Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Comput Methods Appl Mech Eng 197:3080–3091

    MATH  Google Scholar 

  34. Cagnina L, Esquivel S, Coello CC (2008) Solving engineering optimization problems with the simple constrained particle swarm optimizer. Informatica 32(3):319–326

    MATH  Google Scholar 

  35. Maruta I, Kim TH, Sugie T (2009) Fixed-structure H∞ controller synthesis: a metaheuristic approach using simple constrained particle swarm optimization. Automatica 45:553–559

    MathSciNet  MATH  Google Scholar 

  36. Tomassetti G (2010) A cost-effective algorithm for the solution of engineering problems with particle swarm optimization. Eng Optim 42:471–495

    Google Scholar 

  37. Gandomi AH, Yang X-S, Alavi AH (2011) Mixed variable structural optimization using firefly algorithm. Comput Struct 89:2325–2336

    Google Scholar 

  38. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Google Scholar 

  39. Gandomi AH, Yang X-S, Alavi AH, Talatahari S (2013) Bat algorithm for constrained optimization tasks. Neural Comput Applic 22(6):1239–1255

    Google Scholar 

  40. Yildiz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26:327–333

    Google Scholar 

  41. Brajevic I, Tuba M (2013) An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems. J Intell Manuf 24:729–740

    Google Scholar 

  42. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Google Scholar 

  43. Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Comput 36:152–164

    Google Scholar 

  44. Baykasoğlu A (2012) Design optimization with chaos embedded great deluge algorithm. Appl Soft Comput 12:1055–1567

    Google Scholar 

  45. De Melo VCV, Carosio GLC (2013) Investigating multi-view differential evolution for solving constrained engineering design problems. Expert Syst Appl 40(9):3370–3377

    Google Scholar 

  46. Wang Y, Cai Z, Zhou Y et al (2009) Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Struct Multidiscip Optim 37(4):395–413

    Google Scholar 

  47. Akhtar S, Tai K, Ray T (2002) A social-behavioral simulation model for engineering design optimization. Eng Optim 34(4):341–354

    Google Scholar 

  48. Coelho LS (2009) An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications. Reliab Eng Syst Saf 94(4):830–837

    Google Scholar 

  49. P W, Gao L, Zou D et al (2011) An improved particle swarm optimization algorithm for reliability problems. ISA Trans 50(1):71–81

    Google Scholar 

  50. Valian E, Tavakoli S, Mohanna S et al (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64(1):459–468

    Google Scholar 

  51. Gen M, Yun Y (2006) Soft computing approach for reliability optimization: State-of-the-art survey. Reliab Eng Syst Saf 91(9):1008–1026

    Google Scholar 

  52. Hsieh YC, Chen TC et al (1998) Genetic algorithms for reliability design problems. Microelectron Reliab 38(10):1599–1605

    Google Scholar 

  53. Zou D, Gao L, Li S et al (2011) An effective global harmony search algorithm for reliability problems. Expert Syst Appl 38(4):4642–4648

    Google Scholar 

  54. Yeh WC, Hsieh TJ (2011) Solving reliability redundancy allocation problems using an artificial bee colony algorithm. Comput Oper Res 38(11):1465–1473

    MathSciNet  Google Scholar 

  55. Wang L, Li L (2012) A coevolutionary differential evolution with harmony search for reliability–redundancy optimization. Expert Syst Appl 39(5):5271–5278

    Google Scholar 

  56. Kanagaraj G, Ponnambalam SG, Jawahar N (2013) A hybrid cuckoo search and genetic algorithm for reliability–redundancy allocation problems. Comput Ind Eng 66(4):1115–1124

    Google Scholar 

  57. Sheikhalishahi M, Ebrahimipour V, Shiri H et al (2013) A hybrid GA–PSO approach for reliability optimization in redundancy allocation problem. Int J Adv Manuf Technol 68(1–4):317–338

    Google Scholar 

  58. Yokota T, Gen M, Li HH (1996) Genetic algorithm for nonlinear mixed-integer programming problems and its application. Comput Ind Eng 30(4):905–917

    Google Scholar 

  59. Liao TW (2010) Two hybrid differential evolution algorithms for engineering design optimization. Appl Soft Comput 10(4):1188–1199

    Google Scholar 

  60. Ouyang H, Gao L, Li S et al (2015) Improved novel global harmony search with a new relaxation method for reliability optimization problems. Inf Sci 305:14–55

    Google Scholar 

  61. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, 1995: 39–43

  62. Cheng R, Jin Y (2015) A social learning particle swarm optimization algorithm for scalable optimization. Inf Sci 291:43–60

    MathSciNet  MATH  Google Scholar 

  63. Gong YJ, Li JJ, Zhou Y et al (2016) Genetic learning particle swarm optimization. IEEE Transactions on Cybernetics 46(10):2277–2290

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the anonymous referees for their constructive comments and recommendations, which have helped to improve this paper significantly. The authors would also like to express their sincere thanks to P. N. Suganthan for the useful information about meta-heuristic algorithm and optimization problems on their home webpages. This work is supported by Guangzhou Science and Technology Plan Project (201804010299), National Nature Science Foundation of China (Grant No. 61806058, 51505092, 51775122), Guangdong natural science foundation project (2018A030310063) and 2017 undergraduate innovation training program of Guangzhou University (201711078068, CX2017070). Guangzhou university talent launch program (2700050326).

All the authors have no conflict of interest. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Ouyang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 Problem 1 Welded beam design

$$ {\displaystyle \begin{array}{l}f(x)=1.1047{x}_1^2{x}_2+0.04811{x}_3{x}_4\left(14.0+{x}_2\right)\\ {}s.t.\left\{\begin{array}{l}{g}_1(x)=\tau (x)-{\tau}_{\mathrm{max}}\le 0\\ {}{g}_2(x)=\sigma (x)-{\sigma}_{\mathrm{max}}\le 0\\ {}{g}_3(x)={x}_1-{x}_4\le 0\\ {}{g}_4(x)=0.1047{x}_1^2{x}_2+0.04811{x}_3{x}_4\left(14.0+{x}_2\right)-5\le 0\\ {}{g}_5(x)=0.125-{x}_1\le 0\\ {}{g}_6(x)=\theta (x)-{\theta}_{\mathrm{max}}\le 0\\ {}{g}_7(x)=P- Pc(x)\le 0\end{array}\right.\\ {}0.125\le {x}_1\le 10,\kern0.5em 0.1\le {x}_2\le 10,0.1\le {x}_3\le 10,0.1\le {x}_4\le 5\end{array}} $$
$$ {\displaystyle \begin{array}{c}\tau (x)=\sqrt{\tau^{\hbox{'}2}+2{\tau}^{\hbox{'}}{\tau}^{"}\frac{x2}{2R}+{\tau}^{"2}},{\tau}^{\hbox{'}}=P/\left(\sqrt{2}{x}_1{x}_2\right),{\tau}^{"}= MR/J,M=P\left(L+{x}_2/2\right),\\ {}R=0.5\sqrt{{x_2}^2+{\left({x}_1+{x}_3\right)}^2},J=2\left\{\sqrt{2}{x}_1{x}_2\left[\frac{{x_2}^2}{4}+{\left(\frac{x_1+{x}_3}{2}\right)}^2\right]\right\},\kern0.5em \sigma (x)=6 PL/\left({x}_4{x_3}^2\right),\\ {}\theta (x)=6{PL}^3/\left({Ex}_3^2{x}_4\right), Pc(x)=\frac{4.013E\sqrt{x_3^2{x}_4^6/36}}{L}\left[1-\frac{x^3}{2L}\sqrt{\frac{E}{4G}}\right],\\ {}P=6000.L=14,E=30\times {10}^6,G=12\times {10}^6,{\tau}_{\mathrm{max}}=30600,{\sigma}_{\mathrm{max}}=30000,{\theta}_{\mathrm{max}}=0.25\end{array}} $$

Where h(x1) is the weld thickness, l(x2) is the welded joint length, t(x3) is the width of the beam, b(x4) is the thickness of the beam. The problem is subject to five constraints including shear stress (τ), bending stress (s), buckling load (Pc), deflection (δ) and geometric constraints. E is young’s modulus of bar stock, G is shear modulus of bar stock, P is the loading condition, L is overhang length of the beam.

1.2 Problem 2 Speed reducer design

$$ {\displaystyle \begin{array}{l}\begin{array}{c}f(x)=0.7854{x}_1{x}_2^2\left(3.3333{x}_3^2+14.9334{x}_3-43.0934\right)-\\ {}1.506{x}_1\left({x}_6^2+{x}_7^2\right)+7.4777\left({x}_6^3+{x}_7^3\right)+0.7854\left({x}_4{x}_6^2+{x}_5{x}_7^2\right)\end{array}\\ {}s.t\left\{\begin{array}{l}{g}_1(x)=\frac{27}{x_1{x}_2^2{x}_3}-1\le 0,{g}_2(x)=\frac{397.5}{x_1{x}_2^2{x}_3^2}-1\le 0,{g}_3(x)=\frac{1.93{x}_4^3}{x_2{x}_3{x}_6^4}-1\le 0,\\ {}{g}_4(x)=\frac{1.93{x}_5^3}{x_2{x}_3{x}_7^4}-1\le 0,{g}_5(x)=\frac{\sqrt{{\left(\frac{745{x}_4}{x_2{x}_3}\right)}^2+16.9\cdot {10}^6}}{110{x}_6^3}-1\le 0\\ {}{g}_6(x)=\frac{\sqrt{{\left(\frac{745{x}_4}{x_2{x}_3}\right)}^2+157.5\cdot {10}^6}}{85{x}_7^3}-1\le 0\\ {}{g}_7(x)={x}_2{x}_3-40\le 0,{g}_8(x)=-\frac{x_1}{x_2}+5\le 0,{g}_9(x)=\frac{x_1}{x_2}-12\le 0,\\ {}{g}_{10}(x)=\frac{1.5{x}_6+1.9}{x_4}-1\le 0,{g}_{11}(x)=\frac{1.5{x}_7+1.9}{x_5}-1\le 0\\ {}2.6\le {x}_1\le 3.6,0.7\le {x}_2\le 0.8,17\le {x}_3\le 28,7.3\le {x}_4\le 8.3\\ {}7.3\le {x}_5\le 8.3,2.9\le {x}_6\le 3.9,0.5\le {x}_6\le 5.5\end{array}\right.\end{array}} $$

Here, the face width b(x1), module of teeth m(x2), number of teeth in the pinion z(x3), length of the first shaft between bearings l1(x4), length of the second shaft between bearings l2(x5) and the diameter of the first shaft d1(x6) and second shaft d2(x7). Note that the third variable x3 (number of teeth) is of integer value while all other variables are continuous.

1.3 Problem 3 Complex (bridge) system reliability design

$$ {\displaystyle \begin{array}{l}\max\ f\left(\mathbf{r},\mathbf{n}\right)={R}_1{R}_2+{R}_3{R}_4+{R}_1{R}_4{R}_5+{R}_2{R}_3{R}_5-{R}_1{R}_2{R}_3{R}_4-{R}_1{R}_2{R}_3{R}_5\\ {}\kern5.25em -{R}_1{R}_2{R}_4{R}_5-{R}_1{R}_3{R}_4{R}_5-{R}_2{R}_3{R}_4{R}_5+2{R}_1{R}_2{R}_3{R}_4{R}_5\\ {}s.t.\left\{\begin{array}{l}{g}_1\left(\mathbf{r},\mathbf{n}\right)=\sum \limits_{i=1}^m{w}_i{v}_i^2{n}_i^2-V\le 0,\\ {}{g}_2\left(\mathbf{r},\mathbf{n}\right)=\sum \limits_{i=1}^m{\alpha}_i{\left(-\frac{1000}{\ln \left({r}_i\right)}\right)}^{\beta_i}\left[{n}_i+\exp \left(0.25{n}_i\right)\right]-C\le 0,\\ {}{g}_3\left(\mathbf{r},\mathbf{n}\right)=\sum \limits_{i=1}^m{w}_i{n}_i\exp \left(0.5{n}_i\right)-W\le 0,\\ {}0\le {r}_i\le 1,{n}_i\in {Z}^{+},1\le i\le m.\end{array}\right.\end{array}} $$

Here, m is the number of subsystems in the system; ni is the number of components in subsystem i; ri is the reliability of each component in subsystem i, qi = 1- ri is the failure probability of each component in subsystem i; Ri(ni) =1- (qi) ni is the reliability of subsystem i, f(r, n) is the system reliability. wi is the weight of each component in subsystem i; vi is the volume of each component in subsystem i, and ci is the cost of each component in subsystem i; Furthermore, V is the upper limit on the sum of the subsystems’ products of volume and weight; C is the upper limit on the cost of the system; W is the upper limit on the weight of the system. The parameters i and i are physical features of system components. Constraint g1(r, n) is a combination of weight, redundancy allocation and volume. g2(r, n) is a cost constraint, while g3(r, n) is a weight constraint.

1.4 Problem 4 Overspeed protection system for a gas turbine

$$ {\displaystyle \begin{array}{l}\max\ f\left(r,n\right)=\prod \limits_{i=1}^m\left[1-{\left(1-{r}_i\right)}^{n_i}\right]\\ {}s.t.\left\{\begin{array}{l}{g}_1=\sum \limits_{i=1}^m{v}_i{n}_i^2-V\le 0,\\ {}{g}_2=\sum \limits_{i=1}^mC\left({r}_i\right)\left[{n}_i+\exp \left(0.25{n}_i\right)\right]-C\le 0,\\ {}{g}_3=\sum \limits_{i=1}^m{w}_i{n}_i\exp \left(0.5{n}_i\right)-W\le 0,\\ {}0.5\le {r}_i\le 1-{10}^{-6},{r}_i\in {R}^{+},1\le {n}_i\le 10,{n}_i\in {Z}^{+}.\end{array}\right.\end{array}} $$

Here, ri, ni, vi, and wi refer to the reliability of each component, the number of redundant components, the product of weight and volume per element, and the weight of each component, all in stage i. The term exp.(0.25ni) accounts for the interconnecting hardware. The cost of each component with reliability ri at subsystem i is given by \( C\left({r}_i\right)={\alpha}_i{\left(-\frac{T}{\ln \left({r}_i\right)}\right)}^{\beta_i} \) . The parameters i and i are physical features of each component at stage i. T is the operating time during which the component must not fail.

1.5 Problem 5 Convex quadratic reliability design problem

$$ {\displaystyle \begin{array}{l}\max\ R(m)=\prod \limits_{j=1}^{10}\left(1-{\left(1-{p}_j\right)}^{m_j}\right)\\ {}\mathrm{s}.\mathrm{t}.{g}_i(m)=\prod \limits_{j=1}^{10}\left({a}_{ij}{m}_j^2+{c}_{ij}{m}_j\right)\le {b}_i,i=1,2,3,4\end{array}} $$

Here, pj is the reliability of the jth component in a system. All the problem parameters are generated from uniform distributions: pj from [0.80, 0.99], aij from range [0, 10], cij from range [0, 10]. A random set of these coefficients for the case of n = 4 and t = 10 are as below: P = (0.81, 0.93, 0.92, 0.96, 0.99, 0.89, 0.85, 0.83, 0.94, 0.92).

$$ {\displaystyle \begin{array}{l}a=\left(\begin{array}{cccccccccc}2& 7& 3& 0& 5& 6& 9& 4& 8& 1\\ {}4& 9& 2& 7& 1& 0& 8& 3& 5& 6\\ {}5& 1& 7& 4& 3& 6& 0& 9& 8& 2\\ {}8& 3& 5& 6& 9& 7& 2& 4& 0& 1\end{array}\right),c=\left(\begin{array}{cccccccccc}7& 1& 4& 6& 8& 2& 5& 9& 3& 3\\ {}4& 6& 5& 7& 2& 6& 9& 1& 0& 8\\ {}1& 10& 3& 5& 4& 7& 8& 9& 4& 6\\ {}2& 3& 2& 5& 7& 8& 6& 10& 9& 1\end{array}\right)\\ {}b=\left(2.0\times {10}^{13},3.1\times {10}^{12},5.7\times {10}^{13},9.3\times {10}^{12}\right).{m}_j\in \left[1,6\right],j=1,\dots, 10\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Ouyang, H., Mohamed, A.W. et al. Enhanced harmony search algorithm with circular region perturbation for global optimization problems. Appl Intell 50, 951–975 (2020). https://doi.org/10.1007/s10489-019-01558-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-019-01558-6

Keywords

Navigation